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Abstract

We study a bilevel economic system, which we
refer to as dMarkov exchange econoniyiEE),
from the point of view of multi-agent reinforce-
ment learning (MARL). An MEE involves a cen-
tral planner and a group of self-interested agents.
The goal of the agents is to form a Competitive
Equilibrium (CE), where each agent myopically
maximizes her own utility at each step. The goal
of the central planner is to steer the system so as to
maximize social welfare, which is de ned as the
sum of the utilities of all agents. Working in a set-
ting in which the utility function and the system
dynamics are both unknown, we propose to nd
the socially optimal policy and the CE from data
via both online and of ine variants of MARL.
Concretely, we rst devise a novel suboptimal-
ity metric speci cally tailored to MEE, such that
minimizing such a metric certi es globally opti-
mal policies for both the planner and the agents.
Second, in the online setting, we propose an al-
gorithm, dubbed aMOLMwhich combines the
optimism principle for exploration with subgame
CE seeking. Our algorithm can readily incorpo-
rate general function approximation tools for han-
dling large state spaces and achieves a sublinear
regret. Finally, we adapt the algorithm to an of-
ine setting based on the pessimism principle and
establish an upper bound on the suboptimality.

1. Introduction

Many real-world economic systems involve interactions
between a central planner and a group of self-interested
agents, where the planner aims to nd a policy that steers
the agents to some ideal equilibrium that maximizes social
welfare. One widely studied instance is optimal tax policy
design Mirrlees, 1976 Mankiw et al, 2009, where the tax
policy-maker aims at balancing equality and productivity
for tax-payers in the society. Less studied in the previous
literature, the design of learning mechanisms for a bilevel
economic system remains challenging due to the instability
and co-adaptation between agents and the planner, espe-
cially for sequential decision-making problems. Despite the
progress shown by several workgutschinski et al.2003
Mannion et al.2016 Zheng et al.202Q 2021 Lussange

et al, 202]) that apply multi-agent reinforcement learning
(MARL) to instances of economic systems, it is still an
open theoretical challenge to design ef cient mechanisms
for bilevel economic systems with provable guarantees.

Our approach brings MARL methods together with the clas-
sic model exchange economy (EE). The EE framework has
a wide range of applications, including ride-sharing, op-
erations management, crowdsourcing, wireless networks,
and compute cluster€phen & Cyert 1965 Hussain et aJ.
2013 Dissanayake et al2015 Rauch & Schleicher2015.

In an exchange economy, a set of rational agents with indi-
vidual initial endowments allocate and exchange a nite set
of valuable resources based on a common price system. The
target of EE is to achieve Competitive Equilibrium (CE),
where all agents maximize their own utility under their bud-
get constraint. Adapted from EE, our proposed framework,
theMarkov exchange econonfiylEE), comprises a central
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is de ned as the sum of the utilities of all agents over thethe utilities and transitions are of general functional forms.
entire episode. Instead of adding restrictive assumption
that utility functions are known as in many prior works on
EE (Tiwari et al, 2009 Hindman et al.2011 Dissanayake

et al, 2015, we aim to solve MEEs when learning both the
unknown utility functions and transitions. In reality, it is dif-
cult to collect an exact utility function through automated
systems lindman et al.2011, Delimitrou & Kozyrakis
2013 Venkataraman et al2016 Rzadca et al202Q Guo

et al, 2021 and assuming the full knowledge of transition
probability is also unrealistic, which makes the problem still
more challenging.

E)ur work addresses these challenges and provides an af-
rmative answer to the desired question. Speci cally, by
characterizing the optimal policy of planner and agents via
a xed-point formulation, we devise a novel suboptimality
metric such that the suboptimality being zero is equivalent
to the planner-agent policy being jointly optimal. Then,
for the online setting where we learn the optimal policy
by interacting with the MEE, we propose a model-based
MARL algorithm, dubbed aMOLMwhich combines the
Optimism in Face of Uncertainty (OFU) principl&er

et al, 2002 2009 Jin et al, 2018 2019 with a subroutine
Taking one speci ¢ example for illustration, we consider awhich solves the subgame CE for the agents at each timestep.
developer community. In this community, there are multiple Our algorithm can readily incorporate general function ap-
developers who wish to myopically maximize their utility proximators such as kernel functions and neural networks
and an administrator who plans to maximize the sum ofn the estimation of the transition model and is shown to
these developers' utilities. Each developer has her own efchieve a sublinear regret with respect to the newly designed
dowments, e.g., computing resources, memory, bandwidtlsuboptimality metric. Furthermore, for the of ine setting
and programmer time, for exchange within the communitywhere we aim to learn the optimal policy solely from a given
that are available for a nite number of timesteps. At eachdataset, we propose a similar algorithm that incorporates the
timestep, developers report their utilities based on theipessimism principleBuckman et a|.202Q Jin et al, 20219
current allocations and contextual states (electricity fee oto overcome the distributional shift between trajectories in
available time for device usage) to the administrator througltthe dataset and those induced by the optimal policy. This
rating systems. Meanwhile, the administrator implementslgorithm is also able to employ general function approxi-
a regulatory regime based on the collected utilities and cumators and is shown to nd a policy whose suboptimality
rent contextual state. The transition probability of the nextdecays sublinearly in the size of the dataset. Finally, as a
contextual state is only determined by administrator's conbyproduct, we prove that our algorithms achieve approxi-
ducted regulation and current contextual state. mately fair division among the agentgfian 1973 Budish

In this paper, we advocate MARL as a principled methodet al, 2017 Babaioff et al, 2019 in both the online and

for solving MEE. When interaction with environment is ac- of ine settings.
cessible, we learn the policies of the agents and the plann&ontributions. Our contributions are three-fold. First,
through online MARL methods. When only a historical we propose a new economic system known as MEE in
dataset is available, we turn to an of ine MARL protocol. attempt to understand the theoretical properties of solu-
To this end, we focus on the following question. tions to planner-agent economic systems via MARL ap-
] ) i ) proaches. We de ne a suboptimality function to charac-
Can we design provably ef cient online and of ine terize the optimal policy for the planner and the agents in

algorithms for learning the policies of the plannerand 5 MEE, with another suboptimality proposed to charac-
agents to achieve CE and SWM simultaneously in MEE? g6 the fair division property among the agents. Second,

Several challenges arise when addressing this questid’?ﬁfa deS|g.n a MARL-style algorithrMOLMo nd the op- ,
First, from a theoretical point of view, it remains unknown timal policy for the planner and the agents from data in
how to mathematically characterize the jointly optimal pol-Online setting. we establish an online regret
icy of a planner and agents such that we can directly me&PPer bound®(" dH*N2K)), whereK is the number of
sure the performance of any planner-agent policy in term&Pisodest is the time steplN is the number of agents,

of SWM while achieving CE among agents. Secondly. in!S the eluder dimension of the general function class used
the online and of ine settings, where the MEE model is not by MOLM&‘,”de( ) h|ng the logarithmic tgrms and con-
known a priori, it remains unknown how to nd the optimal Stnts- Third, in addition tOLMwe designMPLMfor

policy for both planner and agents when this is coupled with®f i€ MEE. For]MPLMwe establish an of ine subopti-
the problem of balancing the exploration-exploitation trademality bound,®( C?H“N 2=K), whereK is the size of
off in an online setting and the problem of distribution shift dataset an@? is the distribution shift coef cient in sense of
in an of ine setting. Finally, there are generally in nitely partial coverage. Theoretical results show that he@LM
many states since the endowments of agents can be contirandMPLMprovably nd the optimal policy for planner and

ous, and it is unknown how to handle large state spaces iagents in the two settings. In addition, they provably achieve
such online and of ine learning problems, especially when
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fair division among agents as a byproduct. is denoted by = f pghon) Where S 7V A, s 7!
( r(ll) (s); ,(]N)(s); P(s)). Thatis, ,(1') determines the
1.1. Related Work allocation of the™ agent and | determines the price. We

Our work adds to the line of research in applying machineés_Sume that a}nd ¢ bezl!ong. to C|&SS(;S andN res.pectivTIy.
learning methods to economic problems such as@uo( IVen any pair of po icy ; ),-we € ne_lts action-value
et al, 2021, mechanism desigrKandasamy et 312020 function and state value function recursively as

and soc!al planning prob_lemleug 2007). Our analysis ol );(i)(S 'X(i)'bn) _ u(i)(s 'x(i))
of MEE is based on previous works on EBebrey 1982 h h'%h o h A5 %h

Zhang 201_]). Motivated by the extensive !ltgraturg on on- + Vh(+;1 );(')(so)Ph (dsYsn: bn); 1)
line and of ine RL, our works apply the optimism principle s

(Auer et al, 2002 Jin et al, 2018 and pessimism principle v ):(i)(sh) - Q( ; ):(i)(sh. (i)(sh)' h(sh)):
(Buckman et al.202Q Jin et al, 20218 in online and of ine h h h

;ettings, respectively. Our work is also related to IiteraturqOr any(sh: Xﬁi) ‘hihi)2Ss X ® B [H 1] [N].
in MARL (Bucarey et al.2019 Zhong et al.2021) and RL For st d ;o)) Sy — (D) O
with general function approximationXig et al, 2021 Cai ors (eF"H)J(i‘;VG € neQ(H 0 (SH ’X('i*) )= U (S Xy

et al, 20208. However, none of the previous work analyzes @ndVy;" "7 (su) = Q' " (Su;  (Su)). By the def-
bilevel economic systems, as we do for MEE in this papetnition, all these functions take value betwe@andH .

See AppendiB for full discussions of related work.

) ) o 2.2. The Goal of MEE: Social Welfare Maximization
Notations We provide a table of notation in Appendix with Competitive Equilibrium

Now we specify the goal for both social planner and agents
in an MEE, that is, the agents aim to achiegmpetitive

In this section, we introduce our economic model known asquilibriumat each step and the planner aimsraximize
MarkovianExchangdzconomy (MEE) which involves sev- the social welfaravhich is the sum of utilities of all agents.
eral self-interested agents and a social planner. We specilye rst study the optimal policy for the agents and the
the goal for both planner and agents, and we characterizéanner respectively, and after we de ne the joint optimality
their jointly optimal policy via a xed-point formulation. for planner-agents policy pafr; ). The joint optimality

All the proofs for the theorems are referred to Apperflix ~can be characterized by a xed-point formulation, which
allows us to de ne the suboptimality for any policy pair.

2.1. Markovian Exchange Economy One-Step Competitive Equilibrium. The agents' optimal
We de ne a nite horizon Markovian exchange economy POlicy 7 is de ned as the one givi_ngonzir))etitive equilib-
as(S;A:B;N;L: H; fuﬂ)giz[w]-hz[H];fPh Gh2 1) Which rium with re§pect to the utility functionfsu Gi2[N] at_ gaf:h
consists oN agents, one social plannérgoods, andH steph. To this end, we rst de ne a competitive equmbrlum
time steps. The state space is denoteby C EN, (Mas-Colell et al, 1995 Guo et al, 202]) as follows, which

whereCis the context space arifl  [0; 1] is the space of IS ad<.':1.pted to the Markc?\.nan exc.h.an.ge economy. N

each agent's endowments. A state at $tép denoted by ~De nition 2.1 (Competitive EquTbnum.) AN competitive

sh=(cn;e”; ey 2. The agents' action space is €quilibrium (CE) at state = (c; et ' ;etN)) 273 Is an

denoted byA = X @ X N [0:1], wherex ) 2 allocation and price-vector paik®?; . x(N)?:p?) 2

[0; 1] is the allocation space of th® agent and0; 1]- is A such thaii) the allocation is feasible ar(d ) all agents
1. (N). maximize their utilities under the budget induced by price

the price space. We denote By = (X;’; Xy ;Pn) 2 ; i
the agents' action at stép The planner's action space is P’ In other words, following two conditions hold,

2. Preliminaries

denoted byB which is discrete, and the planner's action at OLES X o). 8 2 [L]: @)
steph is denoted by, 2 B. The utility function of the _ ] _ 1 ’

i agent at step is denoted by : S X ) 71 [0;1]. o 2N 2N o

The transition kernel at stdpis denoted by, (sYs;b) : x0?2  argmax  u®(s;xM7); 8 2 [N]: (3)
S B7! ( S).We note that the transition kern}, does (x())>p7 (e))” P

not depend on the agents' action, but only the planner's.
) _ ] ) For simplicity, we denote any competitive equilibrium allo-
Policy and Value Functions. Without loss of generality, cation and price pair at stasewith respect td uDgio g
in the sequel we always focus on deterministic policies foras(x(l) 7. x(N?:57) 2 CRTuW(s; )giany). Based
1 ’ ’ 1 I .

both planner and agents. A planner's policy is denqted b36n De nition 2.1, we de ne the agents' optimal policy as
= T hOnoy where n S 70 B. Anagents' policy o gne that outputs CE pairs at each time step.
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De nition 2.2 (Optimal Policy of Agent) The agents' opti- De nition 2.5 (Optimal Policy of Planner) The planner's
mal policy ? is the policy in  such that for anyh; sp) 2 optimal policy ?( ) given agents' policy is the one irN

H] S, 2(sn)=( 7®(sn); 5 7™M(sh); PP(sp))  suchthatforanyh;sp) 2 [H] S, ¢ (sn) belongs to
satis es 7(sn) 2 CEful’ (sh; )giapng)- Z W

€70 M . .
Under certain assumptionsés-Colell et al. 1995 Guo aggzrgax S Vhat ($)Pn(dssnibn):  (7)

et al, 2021 on the utility functiond uf]i)giz[,\, Lh2H] the
competitive equilibrium exists. To measure the suboptimal (70 0 2 )
ity of a given policy , we further de ne the best responce We note thaw, only depends ony( ) forj > h

? . . - 1 H .
policy of that reallocates among agents given the priceand thus “( ) is well-de ned. Given any policy paif; ),

svstem of to achieve competitive equilibrium we can measure the suboptimality ofvith respectto ?( )
Y P q ' by comparing the social walfare induced byand ?( ).

De nition 2.3 (Best Responce of Agent Policy3iven  \e show this result by the following theorem proven in
any agents' policy 2 , the best responce agents' policy AppendixE.2

? ; ; .

?( )is thi °”e?;'('}) su.ch thag;f(ch)lr)any.h,??g) 2[H]'S . Theorem 2.6. For any policy pair( ; ), the following two
h( )(‘?_‘) =Ca 70 9,.( )i n"()(sn) sat- conciusions hold. (i) For any stdp2 [H] and states,, 2 S,
ises 7P( )(sn)= P(sn)and ( )(sn) 2

_ argmax uﬁ')(sh;xf]')): (4) Vh(' 0 (gp) Vh( O gy (8)
x(2x x> Psn) (€7)> P(sn) i=1 i=1

. - v 7O
i) Furthermore, if the equality ._, V. C(sg) =
The existence of?( ) is guaranteed by the theorem of the Q)N d Vi Vi (51)

) W\
maximum, see Theorem A.2.21 dfghle 2007). With the i=1 v )(51) holds for anys; 2 S, then for any
best responce agent policy( ), we can measure the sub- h2 [H]andsy 2 S we have that
optimality of by comparing the value functions induced Z ] .
by and °( ), which also gives a xed-point formulation | (s,) 2 arg max vl OO (P (dsYsn; by):

of the agents' optimal policy. We conclude this property in bh2B S o
the following theorem whose proof is in Appendixl.
Theorem 2.4. For any po“cy pair( : ) Satisfying the re- Para”el to Theorerﬁ.4, Theorenﬁ.G ShOWS tha.t we end Up

source constraints, i.e., for arj h;sn) 2 [L] [H] S , higher values when substitutingby ?( ). Whenever the
equality holds, the planner policyis optimal given . Mo-

X ) (i) . tivated by the xed-point formulation of ?( ), we de ne
€ (Sn)); (& i the suboptimality of planner's policBubOpg ( ; ;s 1) as
i=1 i=1
the following two conclusions hold. (i) For any stef2 [H X 20y )i Sy
g 0) yste2 [H] v OO0 gy vy ©)

and states,, 2 S, we have that -
1=

Vh(; )?(')(Sh) Vh(’ ( ))?(')(Sh): (5) ' ' . o . .
R _ _ Joint Optimality. Now we de ne the jointly optimal policy
(ii) If the equalityVy* ¢ V' (s;) = v 7(s) holds for the planner and the agents@$( ?); ?), where ?
foranys; 2 S, thenforanyh 2 [H]ands, 2S, n(sp)is and ?( ?) satis es De nition 2.2and2.5repectively, i.e.,
a competitive equilibrium with respectta’) (sy; )gi, ;. the agents nd one-step CE and the planner maximizes the
social walfare induced by the agents' CE policy. Based on
Theorem?2.4tells that we end up higher values when substithe suboptimality6) and (9) for agents and planner, we
tuting by ?( ). Whenever the equality holds, the agentfurther de ne the suboptimalitBubOp ; ;s 1) for any
policy is optimal. Motivated by this xed-point character- planner-agents policy pafr; ) as the following sum,
ization of ?, we de ne the suboptimality of agents' policy

to be SUbO[ﬁ:)( i3S 1) for each ageritZ [N] as SubOpﬁ)( -3 1) + SubOp;( : ’?( )' Sl): (10)

Vl(; ( ));(i)(sl) Vl(i );(i)(sl): (6) i=1
Plugging in the expression of suboptimalit{@ and(9), the
Social Welfare Maximization. For given agents' policy,  suboptimality(10) is equivalent to the following expression,
we de ne the planner's optimal?( ) to be the one inN
that maximizes the social walfare*, V' 7()(s), i.e., X

VOO0 gy G0 gy (11)
the sum of utility functions over agents and time steps. ! ! ’

i=1
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where for simplicity, we denoteY( ) := ?( ?()) the

optimal planner policy given the best responce agent pOliC){

of . We keep to this notation in the sequel. The following
theorem, a corollary of Theoreth4 and2.6, shows that the
joint optimality is equivalent to thatl(l) vanishes.

Theorem 2.7(Fixed-Point Characterization of Joint Opti-
mality). A planner-agents policy pair; ) is jointly opti-
mal if and only ifSubOpt( ; ;s 1) (11) equals to zero.

2.3. Fair Division Property

Achieving competitive equilibrium among agents is also rexssyme that utility function

lated to the notion dfair divisionmechanism which requires
sharing incentive (SI) and Pareto-ef ciency (PEp(ian
1973 Budish et al.2017 Babaioff et al, 2019 2021, Guo
etal, 2021). An allocationxy, 2 X @ X (M satis es

Sl at steph and states, = (¢y;en) if the utility the i-th
agent receives is at least as much as its utility when usin

its endowment, i.euﬂ)(sh;xﬂ)) uﬂ)(sh;eﬂ)). This im-

2.4. General Function Approximation and CE Oracle

n this paper, we apply MARL-style approaches to solve
MEE in both online and of ine settings witgeneral func-
tion approximations Speci cally, we consider two func-
tion classedJ and P to represent the utility functions
fu,ﬂ')g(i;h y2[N] [H] and the transition kernefs, gy 1 re-
spectively. We make the following realizability assumptions
(Uehara & Sun2021; Xie et al, 2021) on them.

Assumption 2.8(Realizability) Without loss of generality,
we assume that (V's are the same for all2 [N]. Then we

ﬂ) 2 U and transitiorP, 2 P

holds for any(i;h) 2 [N] [H].

Besides, we assume that for each seftuwf) gi,(n; in U,
there exists a CE oracleE(fu')(s; )gion;) for anys 2

S that returns CE allocation-price vector pair. This can
He realized ef ciently via methods introducedVarian &
Varian (1992); Zhang(2011); Zahedi et al(2018.

plies that all agents have the incentive to participate in this

division mechanism. Besides, a feasible allocatigris PE
at steph and states;, = ( cy; &) if the utility of one agent

3. Online Learning Algorithm

can be increased only by decreasing the utility of others; ¢ Setup and Learning Objective

Formally, allocationx;, is said to dominate another allo-

cationey, given states;,, if uﬁ)(sh;xﬂ)) uﬂ)(sh;leﬂ))

for alli 2 [N] and there exists sonje2 [N] such that

uf]i)(sh;xﬂ)) >u ﬁj)(sh;ﬁﬁi)). An allocationxy, is Pareto-
ef cient given states,, if it is not dominated by any other
allocations. We denote the set of Pareto-ef cient allocation

at steph and statesy, by PE(sy,; h).

To characterize the fair division property when nding the

optimal policy of agents, we further introduce correspondingto the next statek

loss functions. We rst de ne the Sl loss' for any agents'
policy atsteph and states,, as the sum, over all agents, of
how much they are worse off than their endowment utilities
i.e., wedened(;sn)as

(1)

X
(Uh

snie)  uW(sn; Dt (12)

i=1

Then we de ne the PE losgF for at steph and statesy,

Online Learning Protocol. We study online episodic set-
ting where an online learning algorithm plays an MEE for
K episodes. At the beginning of theth episode, the al-
gorithm determines the planner's and agents' policy pair

d k; k), and an initial stats! is chosen by the environment.

At each time stefn 2 [H], the agents and the planner ob-
serve statsf 2 S and pick their own actional = [ (sf)
andbf = K(sk). Subsequently, the environment transits
Ph(jsf; ) and they observe the

utilities fuy " gip vy with u @ = uld (sk; x¥ M),

Learning Objective. Based on the de nition of suboptimal-
ity (11) for any policy pair( ; ), we de ne the following
online regret with respect to achieving joint optimality.

De nition 3.1 (Online Regret for Joint Optimality)Let

( ¥: ¥) be the policy pair executed by any online learning
algorithm in thek-th episode. After a total df episodes,
the online regret for joint optimality is de ned as

as the minimal sum, over all agents, of how much they are

worse off than PE allocations, i.e., we de NgF (;sp) as

(1)

inf U (s x Dy uW (s O(sp)) T (13)

X2PE (sh;h) i=1

Finally, we de ne the FD lossfP for policy at steph as
the maximum of Sl loss;! and PE lossEE, i.e.,

W Gsn)y=max FE(5sn);TR(ish) (14)

Regretee sw(K) = SubOpt( *; *;sf):
k=1

(15)

Moreover, we also de ne the online regret with respect to
achieving fair division based on the notion of FD lo%d)(

De nition 3.2 (Online Regret for Fair Division Property)
Let( ¥; k) be the policy pair executed by any online algo-
rithm in thek-th episode. After a total df episodes, the
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the online regret for fair division property is de ned as estimator at step from Ur'f(i) andPf respectively as
« " S« # bl (s;xM) = argmau(s; x); (17)
2U (i)ik
Regretp(K)=  E«  “FP( X&) : (16) 5 o

X o
¥(js;b) = argmax Vi (9P (dsds;b); (18)
P2P K Sz

Each summand i(i6) re ects the expected total FD loss forany(i;s;x();b) 2 [N] S X () B . Thenwe choose
of ¥ along the trajectories induced by. We remark that  he agents' policy £ = ( K@ (s); 1 KM(s); kiP(s))
Regret:p(K ) is an extension of the FD loss de ned iB(o  s¢ as to output CE pairs with respect to the estimated opti-

et a_l, 292]) to s_equantla_\l settings. Our goal in the _onlm_e mistic utility function bﬁ;(i) by a CE oracle (SectioR.4),
setting is to design algorithms with both regrets sublinear in

K , and polynomial ird andH , whered is some dimension k(s) = CHIbE D (s Yo ) 19
of the function class used by the algorithm. n(S) By (S )Gz ): (19)
Meanwhile, we choose the planner policy so as to maxi-

3.2. Algorithm: Model-based Optimistic Online mize the estimated optimistic future social welfare,
Learning for MEE N
K(a) — ki (i) k R
We proposeM odel-basedptimistic onlineL earning for h(s) = arbgzgnax . Voot (9Bk dsds; b: - (20)
i=1

MEE (MOLMAIgorithm 1) to learn the joint optimal policy
for planner and agents in the online setting, which involve

S S ; e note that/hki(li) can be seen as the state-value function of
a model estimation step and an optimistic planning step.

a nite-horizon MDP whose reward of staseand actiorb
Model Estimation Step (Line 3). At the beginning ok-th is given byb’ ) (s; K(s);b). After that, the value function
episode, we construct con dence sets for the utilifiy ~ estimators at step are updated accordingly, i.e.,

and the transitio?, using data collected before thketh

K far () oy = R 3D ran (D)
episode, inspired bRusso & Van Roy(2013; Ayoub et al. Qn ' (sixy "3 0) = bﬁ (s%p7)+
i () ki (i) _ i
(29_20_, Cai et aI.QOZOt). For utility uy,’, we letuy, Clip s Vh;(l')(so)lbr'f(ds‘ﬁs; b ; (21)
minimize the empirical mean squared errotdrand let con- s
dence setUf" () consist of all the utility functions it with VO (g)= QM s KD (g): K(g) ;

empirical mean squared discrepency frofh") less than )

a given threshold @ . For transitiorPy,, we similarly con-  forany(s;a;) 2S A B, where we clip the second
struct the con dence s} via value-targeted regression termin Q" betweerDandH  h due to the assumption
(Ayoub et al, 202Q Cai et al, 20208. Given value function that utility functions fall in the rangf9; 1]. Finally, MOLM
estimators V(" g*_, we letPX minimize the empirical €xecutes the joint policg ;) and collects the data for
mean sguared error in predicting the value of future sociathek-th episode according to the protocol in Sectbh
welfare I\, V,.\" givens, ;h,, and the con dence sét _ _ _ _
constains all transitions iR that make similar predictions 3-3- Main Theoretical Results for Online Learning

to Py with empirical mean squared discrepency less thamyr main theoretical results are upper bounds on the two
another threshqld(2> . D_etalls_ of the quel estimation step onjine regret€15) and(16) incurred by Algorithml. For
are concluded in Algorithr8 in AppendixC. the analysis, we introduce the notionedfider dimension
Optimistic Planning Step (Line 4 to Line 8). Thenusing  Which is rstly proposed by Russo & Van Roy2013.

U™ andPk, MOLMerforms optimistic planning accord- De nition 3.3 (Eluder Dimension) LetZ be a set of real-
ing to (1), De nition 2.2and2.5to obtain( ¥; *) which  valued functions oiX . For any" > Oand 2 [K ], we say
is executed in th&-th episode. Intuitively, we rst solve thatx 2 X is(Z;")-independent of<1'P X 12X
the sub-problem of one-step CE for the agents by choosing there exists 1;f, 2 Z such that both jzlljf 1(Xj)

the optimal agents' policy with respect to the estimated Opf,(x;)j2  "2andjfi(x ) fa(x )j>" hold. Theeluder
timistic utilities. After, we cast the sub-problem of social dimensiorof Z at scal€', denoted bydimg(Z ;"), is then

welfare maximization for the planner as nding the optimal de ned as the length of the longest sequefiegg; _; such
policy in an Markov Idec':|.s.|on process Whoge reward is 'nthatxj is (Z :")-independent Oinngl foranyj 2 [ ]
duced by the agents' utilities. Speci cally, given the value

function estimatory/,:{") at steph + 1 with V', being  We refer toRusso & Van Roy(2013 for a detailed dis-
zero functions, we rst choose the most optimistic modelcussion of the eluder dimension. For simplicity, we de ne
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Algorithm 1 Model-based Optimistic Online Learning for Markov Exchange Econdw® L}
Input: Optimism parameters® and @ . Function classes andP.

1: Initialize dataseD? = ; forallh 2 [H]. Setv,{() =0 forall (i;k) 2 [N] [K].

2: fork=1toK do

3: fu ;;(I)g(h;i Y2[H] [N];fP ﬁth[H] = MEU, P;fD ﬁgh2[H]; (1); (2)) /l Model Estimation, A|g0|’ithI’T3.
k; (i k; (i . o . _
4: k; k;th (l)g(h;i Y2[H] [N] = OPL(fUh (I)g(h;i 12[H] [N],fP ﬁth[H])- I OptlmlSth Plannlng, Algorlthrm-.
5. Observe initial statek of episodek.
6: forh=1toH do »
7: Take actionsk = K(sX) andd = K(sK). Observe the next sta,, and the utilitiesu’ .
8: Update datase¥=DF *[f sk;a; b ful @ gom fVv Voo
9: end for
10: end for

Zp to be the class of mappingg : S B f f :S 7! We characterize the generation procesb dify the follow-
[0;HN g 7! [0; 1], (s; b; () 7! ¢ f (9P (ds’js;b), for  ing de nition.
anyP 2 P. With these preparations, we de ne dimension pe nition 4.1 (Of ine Data Generation) The dataseb
d = maxfdime(U; 1=K); dime(Zp ; 1=K)g to character- - consists oK i.i.d. trajectoriesD g ,x ;, where each tra-
ize the complexity of function classésandP. The fol- jectoryD = f(s,:fx, (i) . bful g )
lowing theorem is the main theoretical results in the online! yD = (S FXg " Giapnys By UL G2 1) Gna )

) ) . is collected as a prior in the MEE. Speci cally, for each
setting. All the omitted proofs are in Appendix1andF. ) ) 0

) ) 2 [K], it holds thatsp+1 Pn(Jsyih,), Uy =

Theorem 3.4(Regret of Algorithml). By setting parame- Un (S, 2 X, (i))
ters O asCylog(N (1=K; U;k ki JNHK 2=)and @ hish:%h /e
asCoH?N?log(N (1=5(NHK );P;k ki ;1)NHK 2= )for | eaming Objective. In of ine learning, the goal is to de-
some absolute constartts andC, in Algorithm1, itholds  sjgn algorithm that outputs policy p&ib b) which is joint
with probability atleastl  that the regret for joint opti-  gptimal and achieves fair division. For being joint optimal,
mality (15) and the regret for fair division propertfi6) of  \ye measure the performance(tf b) by SubOpfh b's 1)

Algorithm 1 satis es that de ned in (11). For achieving fair division, we adapt the
q FD loss de ned in {4) to of ine setting as follows.
Regretce.swm (K) O (- dHZ(NZ D+ ()K): (22) X h i
Leo (5 )= E, FP(isn) ; (24)
h=1

Regretp (K) O (IO dH2N2 O K): (23)
where , is the visitation measure at ste® [H] that the
We show the exact expression P and @ in the proof ~ dataseD obeys, i.e., h(sifxgizny; b) is de ned as
of Theorem3.4in AppendixC.1L Theorem3.4 indicates Ceiui (D e .
that the yegret for joint optimality of Algorithnd is of P(sh = sifx" ™ giopng = Txp Gony by = B (25)
order@(" dH*N 2K ), which shows thaMOLMef ciently ¢4, any 2 [K]in D. We hope to design an algorithm
nds the jointly optimal policy approximately. Besides joint hat achieves suboptimalitpubOpth b's 1) and of ine

optimality, Algorithm1 also achieves fair division among gp |ossL eo (b b) decaying at a negative square root rate
agents approximately as a byproduct, i.e., it approximately,iip, respect tcK .

nds agents' policy which simultaneously achieves Sl and
PE in the online setting. We specialize Theor8m to

) ) ) 4.2. Algorithm: Model-based Pessimistic Of ine
tabular, linear, and kernel cases in Appendix

Learning for MEE

We proposéM odel-basedPessimistic of ineL earning for
MEE (MPLM Algorithm 2) to learn the desired planner-
4.1. Setup and Learning Objective agent policy pair, which involves a model estimation step

imistic poli i ati ; b);(i)
Of ine Learning Protocol. Now we study the of ine set- and a pessimistic policy optimization step. We lt?é:(?liﬂ:b)

ting where the learner only has access to an of ine datase® denote the value function of polic%{)péb b) induced by
D = f(s,:fx, (I)giZ[N]; b,:fu, (I)giZ[N])g( n)2K] H] the estimated utility functiob = f by’ g(niy2uy vy and
which is generated as a prior by an economist in the MERhe estimated transitioR = f Ibhghg 1] according to {).

4. Of ine Learning Algorithm
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Algorithm 2 Model-based Pessimistic Online Learning for Markov Exchange EconbiRy. i)l
Input: Pessimism Parameter, ,. Function classeld andP.

1. forh=1toH do _
Construct con dence seft) r(,:)lgiz[,\,] andPy. , according to 26), (27). // Model Estimation.
: end for
:forh=1toH do
Setb(s;x() = arg min,

o ulsix®) andby(s) = CEFbY (s )gizp)). forany(i;s;x ) 2 [N s X O,
hy 1

: end for

. lb - ; _PN \p(;b);(i) i Lo . L

: Set(h P) =argmax » MiNp.t op, :8h2[H]g- i=1 (s1): /I Pessimistic Policy Optimization.
: i

1;(P;b)
Output: Policy pair(h b).

N b wN

Model Estimation (Line 1 to 3). We rst construct con -  dataseD obeys is de ned in25). In parallel, we de ne the
dence sets for the utilityﬂ) and the transitiof®, respec- visitation measurdfj )(s;fx(i)giz[N]; b) at steph 2 [H]
tively. Foruf’, we let the con dence saff’ consistof ~of any given joint policy( ; ) as

all functions inU whose empirical mean squared errors are

( () PUUPIN () WA
less than a given thresholg, i.e., we seU,g:)1 as P(sh = s;fx"giaing = Xy Gianpsbh = bj 5 & (28)

% De nition 4.2 (Distribution Shift) We de ne the distribu-
u2U 1 uh; (i) U(Shixh; (i)) 2 L o (26) tion shift coef cient between a given joint polidy; ) and

K o the dataset visitation measure= f pgho(H) as
!
For Py, we rst obtain the maximum likelihood estimator . qt )(S;fx(i)giz[N];b). 2
BMLE that maximize the empirical likelihood function, i.e., ct)=swpE, _ (29)
h2[H] h(s:fx(giongs b)

BME = argmay,p <, 10gP (Spsy JSy:hy,). Then we
set the con dence sy, , to be transitions irP whose  Assumption 4.3(Partial Coverage)We assume that the
empirical mean squared TV-distancef¥'F is less than a  distribution shift between all the possible jointly optimal

given threshold, i.e., we sePy,. , as policy and the dataset visitation measure is nite, that is,
X c’:= sup CU )<1;
2P :Ki KBME  P) sk o (27) 2N 2 (30)
=1
where 7:=f ?(): 2NgN’ :=f ?(): 2Ng:

Pessimistic Optimization (Line 4 to 8). With Uéﬁ)l and  Similar partial coverage assumptions are widely adopted in
Ph; ,,» MPLMhen performs pessimistic policy optimization of ine RL literature (Kidambi et al, 202Q Jin et al, 20218,

to nd the policy pair(h b) as its output. Parallel to the which is weaker than uniform coverage assumptidtsr(os
online setting, we rst solve the sub-problem for agents viag Szepesiari, 200§ Chen & Jiang2019. The following
choosing the optimal agents' polidywith respect to the es- two theorems are our main results in of ine setting. All the
timated pessimistic utilities. After, we cast the sub-problemomitted proofs are in Appendi.2andG.

of s_omal V\_/el_fare_ maX|m|zat|qn for the planner asan of ine Theorem 4.4(Suboptimality of Algorithn2). By setting the
policy optimization problem in MDP with reward induced parameters ; asC; log(N (1=K; U:k k; ) NH= )=K

by the agepts utilities. Insplr(_ed_ byehara .&.Sur(2021), and , asCy log(N(1=K; P:k k1 )H= )=K for some

we solve this sub-problem by jointly optimizing overand absolute constant§; andC, in Algorithm2, it holds with

P such that the pessimistic social welfare estimator is maXibrobability at leastl that the suboptirhalitjll) and
mized, which can be formulated as a minimax optimizationOf ine FD loss (24) of Algorithm2 satis es

problem. See Algorithn2 for a detailed description. q

. . ) , SubOpt(h b) O ( H4NZ2C?=K); (31)
4.3. Main Theoretical Results for Of ine Learning

Our main theoretical results are upper bounds on the subop- p TETNER =2

timality (11) and of ine FD loss(24) incurred by Algorithm Leo (b b) O (0 HENZ %K), (32)
2. To guarantee provably ef cient learning, we make cer-where =log N[](1:K2; P;k ki1 )+log N (1=K?;U;k
tain assumptions on the coverage property of the daaset k; )+log(HN= ), °=log(N (1=K?;U;k ki ) NH=)
Recall that the visitation measurg at steph 2 [H]the andC? is de ned in(30).
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A. Notations

Throughout this paper, we denote [t¥y] = f 1;:::; N g. We also denote by X) the probability space on s¥t. We denote
by a = O(b) if there exists an absolute constarguch that  cbwhena andbare both large enough. We u@ ) to hide
the constants term and logarithmic termgi). We useClip (4,5;(C) to represenminf maxf a; cg; bg for real numbers

a; b, andc. We usef ag* to representaxf a; 0g for real number. Given a function clask , we denote b\ (; F;k k)

the -covering number oF by k k norm, and we denote by (; F& k) the -bracket number oF by k k norm.
For functionclas® : S B 7! ( S),wedenote bkPki.1 =supgy, o jP(sYs; bjds’for anyP 2 P . We de ne that

j =1ifi=jand; =0ifi 6 j.Foradistribution , we useE []andV []to denote the expectation and the variance

taken with respect to, respectively.

General Notation Explanation
Sp = (ch;eﬁl) X ;eﬁN)) 2S state at step, ¢, 2 Cis context,eff) 2 E is endowments of thé" agent
an=(x;  ;x™:py) 2A | action of agents at step x{ 2 X () is allocation of thé™ agentpy, 2 [0; 1] is price
2B action of planner at stelp
uf]i) utility function of thei!" agent at step
Py transition kernel at stelp
= f hohomg agents' policy, = r(,l); ; ﬁN); 9!
7= fOhom optimal agents' policy 7 = ( [®; ; 7N, 7Py

?( )= n( )th[H]
. =f hGh2[H]
C)=1 i )ghz[H]
()= f %( )ghz_[H]
Vh(; );(').Qﬁ; )i(1)

best responce agents' policy of 2( )=( 7P ();  ; ZMN(); FP()
planner's policy
optimal planner's policy given agents' policy(De nition 2.5
abbreviation of 7( ?( ))
value functions of policy paif ; ) for thei™ agent at step

Notations for Online Setting Explanation
sk = (e eeNhos state at step of episodek
ak = (xf®; oxFMighy 2 A action of agents at stepof episodek
B 2B action of planner at stefp of episodek
ue® utility of the i" agent at step of episodek
Ur'f;(i) con dence set of utility functions for the" agent at step of episodek
PK con dence set of transition kernels at stepf episodek
bﬁ;(i) optimistic utility function estimator of thé" agent at step of episodek
i\ optimistic transition estimator at stépof episodek
K=f KOhom) agents' policy of episod, £ =( S®; ; KM, ke
K=f KOhopmg planner's policy of episodk
ve® Q™ value function estimators at stépof episodek
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Notation for Of ine Setting Explanation
s,=(c;eW; ee™M)2s state at step in dataseD
a, =(x, " i Mip)2A action of agents at stépin dataseD
b, 2B action of planner at stefpin dataseD
uh; @ utility of the i agent in datasdd
U,gg)l con dence set of utility functions for thé" agent at step
Ph: , con dence set of transition kernels at step
bﬂ) pessimistic utility function estimator of tH& agent at step
b, pessimistic transition estimator at step
b= fbnOnhaH] estimated optimal agents' policl, = ( b,ﬂl); ; b,gN); b,’:)
b= fbhOnhom; estimated optimal planner's policy
LT value function of(h b) induced byb = fb{ g )27 vy and® = fBhgho

For the completeness of the paper, we provide the de nitions of covering number and bracketing number as follows.

De nition A.1 (Covering Number bk k-norm). LetN (; G k k) be the smallest value & for which there exist a
subsef gjco"ergj 2iv1 G such that for each 2 G, there is § = j(g) 2 [M] such that

kgj(:over gk
De nition A.2 (Bracketing Number bk k-norm (Geer et al.2000). LetNp(; G k k) be the smallest value oA for
which there exist pairs of functiorfidg" ; g’ 1gj2 v suchthakg” g-k  forallj 2 [M], and for eacly 2 G, there is
aj = j(g) 2 [M]such that

B. Related Work

We present detailed discussions on the related work in this section.

Machine learning for Economy. Our work adds to the vast body of existing literature on applying machine learning
methods to solving various economical issues, where the utility functions for agents are not given a priori but learnable. For
EE,Guo et al.(2}927]) propose the rst online learning mechanism which adopts generalized linear function approximation
and achieve@( K) online regret and online fair division loss. This theoretical result matches the the conclusion of our
proposed mechanism, when MEE is specialized to EE and the function class of utility is chosen as generalized linear function.
Aimed at analyzing the optimal allocation rules among agents, the automated mechanism design of revenue-maximizing
combinatorial auctions has been widely studied with online learning metBaigémann & Valimaki2006 Kakade et al.

201Q Babaioff et al, 2013 Balcan et al.2016 Dudk et al, 2017 Kandasamy et al2020. They analyze the online

regret of the proposed mechanism even under the dynamic setting, while they do not consider bilevel economic systems
and general function approximations for handling continuous state space as in this paper. Besides, several other works also
adopt deep RL in multi-agent economic simulations, achieving empirical suctiessg et al.2021). Among themZheng

et al.(202]) provide the rst experimental MARL framework for the policy design of bilevel economic systems and obtain
satisfactory results on the simulation baseline. However, the theory behind MARL methods is less studied. More recently,
Min et al. (2022 apply MARL to study the problem of matching in a Markov matching market.

Exchange Economy. Our work is based on a rich line of aforementioned works in CE and fair division of leEdn

& Cyert, 1965 Debrey 1982 Georgiadis et al]2006 Zhang 2011, Dissanayake et al2015. Under certain regularity
conditions on utility functionsDebreu(1982 study the existence of CE of EE ad@tiang(2011) propose a computationally

ef cient algorithm to compute CE of EE, both of which lay the foundation of our work. Besides, fair division of EE has
been studied from both theoretical aspe®tsian 1973 Budish et al. 2017 Babaioff et al, 2019 2021 and practical
points of view Wolski et al, 2001, Vavilapalli et al, 2013 Zahedi et al.2018. However, most previous works on EE
assume the full knowledge of the utility functions of agents. As the initial attempt for learning unknown utility, some works
(Zahedi et al., 2018; Le et al., 2020) assert some explicit but also restrictive assumptions on utility.
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Moreover,Mehra(2006; Chatrapati et al(2011); Cao (2020 study recursive CE (RCE) on dynamic EE, where agents
exchange resources for multiple timesteps but no planner is invoGaa(2020 study the existance of RCE under several
restrictive assumptions on the transition kernel of dynamic EE. Different from MEE, dynamic EE neglects the co-adaptation
between the agents and the planner and hence is not our interested bilevel system.

Social Planning Problem. Our work is also related to the social planning problem (SPP), a classic topic in welfare
economicsKahn 1969 Salyer 1996 Blaug, 2007). In SPP, a social planner who desires to maximize a prede ned social
welfare function can make all decisions in the economy. Different from EE, there is no price system in SPP, while the
second social welfare theorem (Blaug, 2007) shows that any SPP can be decentralized to solving CE. Since SPP ignores the
co-adaptation between the social planner and the agents in the economy, previous works on SPP can not solve or decentralize
bilevel systems, such as MEE.

Multi-Agent Reinforcement Learning and Stackelberg Equilibrium.  Our work is also related to a rich line of works in
MARL which extends RL to decision-making involving multiple interacting ageBtsspniu et al.2008 Hernandez-Leal

et al, 2018 2019 OroojlooyJadid & Hajinezhad?019 Zhang et al.2021), We advocate MARL as a principled method for
solving economical issues. In MARL, agents might have asymmetric roles such leader-follower stiBigtarey et al.

2019 Bai et al, 2021, Zhong et al.2021) which is related to our work, while previous works mainly focus on nding the
Stackelberg-Nash equilibriunBésar & Olsder 1998. Among these works, our MARL application in economics is most
related tazhong et al(2021) who also study a myopic follower setting. In contrast, in their work the followers aim to nd
Nash equilibrium while we hope to nd competitive equilibrium in EE. Also, we study general function approximations
which bears more generality when handling large state space.

Optimism and Online Reinforcement Learning. Our work is related to another urry line of works studying online RL
coeperated with optimism. wFor tabular setting where state space is nite, how to propose online RL algorithms achieving
®( K) online regret is thoroughly studiedzar et al, 2017 Jin et al, 2018 Zhang et al.2020. Adopting the principle of
Optimism in the face of Uncertainty (OFUA(er et al, 2002 2009 Jin et al, 2018 2019, they overestimate action-value
functions by adding a bonus to incentive exploration. When the state space is large or even continuous, the use of function
approximation is necessary. Also based on OFU, there are several resediclasl, 2019 Wang et al. 2019 Cai

et @,30206) apply (generalized) linear function approximation on the transition kernel or action-value function and prove
@( K) online regret. Beyond linear setting, a recent line of works study RL with general function approxinfgtiar

et al, 202Q Cai et al, 2020h Jin et al, 20213. Based on the notion of eluder dimension introducedRbgso & Van Roy

(20149 that characterizes the complexity of function cla8syub et al.(2020); Cai et al.(20208 combine norb—ﬁﬂear value

target regression and OFU, proposing online RL algorithms with general function approximations ac8igvikg online
regret.Jin et al.(20214 also achieve such a goal by proposing a more generalized complexity measure: Bellman eluder
dimension. All works mentioned above study RL problem involving a single agent, which is different from our interested
bilevel systems.

Pessimism and Of ine Reinforcement Learning. Our works are also related to many literature concerning pessimism
and of ine RL in recent yearslL(u et al, 202Q Rashidinejad et gl2021; Jin et al, 2021h Xie et al, 2021, Uehara &

Sun 2021). Different from online RL, the introduction of of ine dataset leads to a potential distribution shift. When the
dataset has no coverage guaranBeeskman et al(2020; Zanette(2021) nd that the lower bound of of ine RL could even

be exponential. Rather than assuming a well-explored dataset in many previous litekatoeedt al, 2007, Munos &
Szepesiri, 2008 Yang et al, 2020 Ross & Bagnell2012 Chen & Jiang2019, several worksRajaraman et 31202Q
Kidambi et al, 202Q Jin et al, 20218 adopt pessimism in model estimation and pré&@ 172) suboptimality even under

a partial coverage dataseéiu et al. (2020 propose a pessimistic variant of tted Q-learning algoritham{os et al, 2007),
achieving the optimal policy within a restricted class of policies without assuming the dataset to be well-exfitored.
et al.(2021h propose a provably ef cient algorithm with the spirit of pessimism to solve of ine RL with linear function
approximations, under no coverage assumption on the daRastidinejad et a(2021) study the of ine RL in the tabular
case through lower con dence bound (LCB), only assuming the partial coverage assumption on the dataset. With general
function approximations on of ine RL and partial coverage dataset, the suboptimality [@(iad 1=2) is achieved by both
model-basedehara & Sun2021) and model-freeXie et al, 2021 algorithms. They both apply Berstein inequality to
sharpen the convergence rat€@(K 172). Besides, all works mentioned above analyze the optimization problem over a
single agent, different from a bilevel system.
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C. Omitted Algorithms and Proof Sketches
C.1. Online Setting
C.1.1. OMNITTED ALGORITHMS

We present the omitted algorithE(Algorithm 3) for model estimation an@PL (Algorithm 4) for optimistic planning
respectively.

Algorithm 3 Model Estimation B
Input: Feasible utility set) and transition se® . Historical datd (s, ; a,; b,; fuy, (i)giz[N])g( h)2k 1 H] and value

function estimator§V,,\" g ni )2 11 1] (v]- OPtimism parameter®, @
1: for h 1toH do

2. ud" =argmin , k_ll(uh' 0 u(sh,xh;(i)))z, foralli 2 [N].

3 U =fu2u: D (s ixi My use )2 @g foralli 2 [N].

- o\l Gy ) o, G

4: Ph —argmmpzl% h Pt Vil ) s a1 Vi séP(ds‘ish h,))2.

5: =fP2P: —1( s =1 Vh+(|)(SO)Ph (sYsnib)ds® g i Vh+(l)(SO)P(SCiSh b,))? @g.
6: end for

k; (i
7. Return fUh (I)g(h;i)g[H] [N] andfP rl1(gh2[H]-

Algorithm 4 Optimistic Planning @PL)
Input:  Utility con dence setsU ,'f;(i)g(h;i y2{H] (N7 @nd transition con dence sefB [ gno u-
1: for h=H toldo
bﬁ()( )= argmax,,, () u(;),8i 2 [N].
P

BR(j;)=argmaxoe g 1oy Vhst (SIP(AsT ;).

£()= CEf by ¢ -F,)giz%)

;gk( )= argmayg N Vet (9B (dsT ; by.
Qi )=V )+ Giip o nif s Vot (SIPE(AsT 5 )g, 8i 2 N]
VD O= QRO (5 K O(); K()),8i 2 IN].

end for

N

ON o gk ow

C.1.2. ROOFSKETCH OF THEOREM 3.4

In the sequel, we sketch the proof of the rst conclusion of TheoBni.e., the upper bound on the regret for joint
optimality. Missing details are left to Appendix The proof of the regret for fair division property is left to Appenéix.
We start from a decomposition of the online learning regret in the following lemma.

Lemma C.1(Regret Decomposition)We can decompose the online regret de nedlif) @s following,

R K:){(X‘lX\IE i) %) k y( k K)ok k(i) rgky. kegk !
egret(K) TS Qh (s n O RS Qs (st h(sh))
k=1 h=1 i=1
X X x X -
' Evgey o Ashialibh) + (ZE GV )
k=1 h=1 k=1 i=1
(33)
where K(; ; ) is de ned as for any(sh;an;h)2S A B
W z
Kfa -a - — I) (1) (1) . $(0) ().
h(shian;bn) = (Sn;Xp') + Vh+ (s9Pn(dsTsnibn) QKM (snix{);bu): (34)

i=1

Here the functlonivh 0 Qk @) and the policieg K; K) are selected by Algorithrh
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Proof of LemmaC.1 See Appendi¥.1for a detailed proof. O

Therefore, it suf ces to establish upper bounds for each term on the right-hand s@i®.oflie rst term is characterized
by the following lemma, which is derived from the choicg(of; ¥) on each episode.

Lemma C.2(One-Step Competitive Equilibrium and Social Welfare Maximizatiohycording to Algorithird, for any
(k;h) 2 [K] [H]andanys, 2 S, it holds that

O G G [CH B A QU TC ) B e C R CH N C Y I (35)
i=1
Proof of LemmaC.2. See Appendi¥.2for a detailed proof. O

Besides, the second and the third terms of the right-hand si@Spéfe characterized by the next lemma.
Lemma C.3(Optimism and Accuracy)BY setting the optimism parametef) and @ as
@ =2log (N (1=K; U;k ki) 2NH= )+4 1+ P log(8K 2H=") ; (36)
p
@ =2H2N? log (N (1=(KHN );P;k ki .1) 2H=)+4 HN + H2N2=4 log(8K2H=) : (37)

in Algorithm1, then with probability at least  , the following two things holds.
(1) (Optimism) For all(k;h) 2 [K] [H]and any(sh;an;b,)2S A B, itholds that

Z
uﬁ')(sh;xﬁ'))+ thig')(so)Ph(ds‘ﬁsh;m) Q'f];(')(sh;xf]');kh) 0: (38)
i=1 S

(2) (Accuracy) By denotind = max f dimg(U; 1=K); dimg(Zp ; 1=K)g, it holds that

vieWsky v (sk) O ( KH3NZlog(4=))+ H d(N2 @ + @)K)+ dH2N: (39)
k=1 i=1
Proof of LemmaC.3. See Appendi¥.3for a detailed proof. O

Proof of Theoren3.4. Combining LemmaC.1, LemmaC.2, and LemmaC.3, we can prove Theore@4. According to
LemmaC.1, LemmaC.2 and LemmaC.3, with probability at least  , it holds that

q
Regret(K ) P 8KH 3N2log(4=)+4H 2d(N2 O + @)K + dH?N

o) (p dH2N?2( 1+ 2)K);

which nishes the proof of Theorer.4. O

C.2. Of ine Setting

Our proof is based on the following two key lemmas.
Lemma C.4 (Upper Bound of Suboptimality)For the output(h b) of Algorithm2, it holds that,

qg__ X d— q
SubOpt(h b) C? 0+ HN o
h=1
X . .
b); b); .
N bl(;?.b;)b;') VBRI (g,

P ; : )
where error terms are de nedag := E, N, jb (s;xM)  up(s;xM)j2and P = E  kB,(js;b  Pu(js;bk2.
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Proof of LemmaC.4. See AppendiG.1for detailed proof. O
In the sequel, we bound the two summations in the suboptimality upper bound in Théateaspectively. To this end, we
introduce the following results, concluded in Lem@a, TheoremC.6, and TheorenC.7.

Lemma C.5(Pessimistic) Under evenk := fuﬂ) 2 U,ﬂj)l;Ph 2Py ,; forall (i;h) 2 [N] [H]g, it holds that,

_ Ve () VPO o

Proof of LemmaC.5. See AppendixG.2for detailed proof. O

Based on Lemme&.4and LemmeC.5, what remains is to upper bounfi and ﬁ in LemmacC.4respectively and to show
that the evenE holds with high probability. These are shown by the following two theorems.

Theorem C.6(Analysis for Utility Function Estimation) For the output(lh b) of Algorithm2, the following statements
hold with probability at leas. =2,

1. Eo:= ful’ 20 ; forall (i;h) 2 [N] [H]gholds.

2. 2 O (log(N(1=KZ%U;k ki) NH= )N=K),forall (i;h) 2 [N] [H].

Proof of TheorenC.6. See Appendixz.3for detailed proof. O

Theorem C.7(Analysis for Transition Kernel Estimation}or the output(h b) of Algorithm2,the following statements
hold with probability at leas. = =2,

1. E1 = fPy 2Py ,; forall h 2 [H]g holds.
2. f O (log(Np(1=K?;P;k ka1 )H=)=K)forallh2 [H].
Proof of TheorenC.7. See Appendixz.4for detailed proof. O

Now combining the result of Theore@\7and TheorenC.6and noting thaE = Eo\ Eq, we can show that with probability
atleastl , the even€ holds, which implies that the conclusion of Lem@&b holds. Meanwhile, error terms de ned in
LemmacC.4are bounded as follows "
hO(N=K) [ O(=K)
where we de ne =log Nj(1=K?;P;k ki;1 )+log N (1=K?;U;k ki )+log( HN=).
Finally, according to Lemmg&.4, we have that
q— X 09— q ry q___
SubOpt(h bs) c? 0+ HN PO ( HAN2C?=K);
h=1

which nishes the proof of Theorerm.4.

D. Special Cases

D.1. Linear Function Approximation

On the rst case, we parameteriBeandU by a common parameter vecto RY. We assume there exist an absolute
constantd, known feature maps andf ;g , such thatP = fP(s%s;b = (s%s;b” ): 2 gandU =
fu(s;x)=i(s;xM)> : 2 g. FollowingRusso & Van Roy2013, we assert the following assumption.

Assumption D.1(Regularity of Linear Function Approximation)/Ve assume the following two regularity conditions. (1)
SUPsospyzs se K (S%SiDke  landsupsxiyasx o K i(sixMke  1.(2) = f 2R :k kp 1g.



Welfare Maximization in Competitive Equilibrium: Reinforcement Learning for Markov Exchange Economy

Corollary D.2 (Theoretical Analysis of Algorithmi and Algorithm?2 with Linear Function Approximations)Under the
same conditions as in Theoredn, it holds with probability at least that the regret for joint optimality and for fair
division property of Algorithni satisfy,

P P——
Regreteg.sww (K)  G( d?HAN4K); Regretp (K) 6( d?H2N2K):
For Algorithm2, on the same condition as Theordm, it holds with probability at least

q —
SubOpt(h b) ®( H4N2dC?=K);  Lep(b) @(pHZNZd:K):

Proof of CorollaryD.2. It suf ces to upper bound the covering number, bracketing number, and eluder dimension under
AssumptionD.1 respectively. For the upper bound of covering number and bracketing number, we introduce the following
lemma.

Lemma D.3(Speci cation of Covering Number and Bracketing Numbeidnder Assumptiod.1, it holds for all 2 (0; 1)
that
logN (; U;k ki) dlog(Bhy=)= &(d);

logN (; P;k ki1 ) logNp(2; Pik ki1 ) log(4hyjSj=) = G(d):
Proof of Lemmd.3. For the rstinequality in Lemmad.3, we prove it by de nition of covering number. By the second
point in AssumptiorD.1, is a ball with radiudl in d-dimension Euclidean space, which guarantees that (Lemma 5.2 of

Vershynin(2010)
logN (; ;k ki) dlog(3=): (40)

Taking the -coveringof as = f jgjom;andarbitrarily xingi 2 [N], itimpliesforanyu (; )= h( i(;)” )2U,
there exist§ 2 [M] such that

ju (s;x®) u sxj= isEx)7C D koisxMkek ke k ko (41)

where the second last inequality relies on the rst point in Assumpilahand the last inequality follows from the
de nition of covering number. Taking supreme on the both sidédf over(s;x)) 2S X (), we show thafu | =
(;)” j92misalso a-covering ofU underl -norm, implying that

logN ( Uk ki) dlog(3=9 = &(d):
Hence we complete the proof of the rst part of LemiD&B.

As for the second part, we introduce the following key lemma to connect bracketing number with covering number, which is
proved inSen(2018.

Lemma D.4(Theorem 2.14 ir5en(2018). LetF = fm : 2 gbe aclass of functions satisfying the following condition
im.(x) m,(x)j d(a; 2)F(x); 8x2X;81; 22 ;
for some xed functiorr and metricd. Then, for any nornk Kk, it yields that

Np(2 kFk;F;k k) N (; ;d):

Under AssumptioD.1, for any two kernel® ;P , 2 P, it holds that
PLs%isih P o(s%isiDi=] (s%siB7 (1 2)i  huk (sUsibkek 1 oke
Applying LemmaD.4 with F (s%s;b) = k (s%s; bk, and noticing thakF k;.;  jSj , we derive that
logNp(2jSj; P;k ki) logN(; 1k k) dlog(l=)= &(d);
where the last inequality follows frond(). Taking °= 2jSj , we have that
logNp( %P;k ki1 ) dlog(2jSj=9:

Noting that for all normed spad&; k k), itholdsthatN (; X;k k) N (2; X;k k), which concludes the proof of
LemmaD.3. 0
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As the second step in the proof of Corollddy2, under Assumptio.1 we upper bound the eluder dimension de ne®i
by the following lemma.

Lemma D.5(Speci cation of Eluder Dimension)Under Assumptio®.1, it holds for all 2 (0;1) that
dimg(U; ) O(d);  dimg(Zp; ) ©(d);
whereZp is de ned in SectiorB.3.
Proof of Lemmad.5. The proof is a special case of the following lemma proveRursso & Van Roy2013.
Lemma D.6 (Proposition 12 oRusso & Van Roy2013). We de ne the function class of as
F=fh( ()> ): 2RY f f:X7 Rg;

for a xed differential functiorh( ) and a feature map (). If we assume thd@d<h_ h%y) hyforally 2 R, thenit
holds for all 2 (0; 1) that

r2h? sup, k ka sup,x K' (X)kz
5 ;

dimg(F; ) O dr2log r?+
wherer := hy=h_. anddimg(F; ) is de ned in De nition 3.3,

Now we are ready to specifyimg(U; ) anddimg(Zp; ) by takingh( ) as identity function. Under Assumptidnl, it
holds thatkk k, 1forall 2 andk i(; )k, 1, whichimplies that

dimg(U; ) O dlog 1+ iz = @(d): (42)

The analysis for dima( ; Zp) needs more elaborations. Recall that for ea¢ct? Z 5, it holds that
Z Z Z
p((sibif))=  f(HP@Esih= f(sY) (%s;p)” ds®= > f(sH (s%s;byds’,
S S S

wheref is a agpitrary functionirf : S 7! [O;HN Jand(s;) 2S B . IfwetakeX =S B f f :S 7! [0;HN]gand
"((sibif) = S f(sY (s%s;bds®in LemmaD.6, we obtain that
1

Z s
dimg(Zp; ) O dlog 1+HN sup J’iz'sto
(sb)2SB S

O (dlog(1+ HN jSj)) = G(d);

where the last inequality relies on the rst point of Assumption. O

Then we are ready to prove corollaby2. Based on LemmB.3, we can upper bound the optimism parame(86 in
Algorithm 1 as

D = @(d); @ = @(H?2N2d): (43)

We also upper bound the pessimism parameters de ned in Thebreoh Algorithm 2 as

1= G(d=K); 2 = G(d=K): (44)
Combining Lemma.5 and plugging them into Theore®&4, Theorem4.4respectively, we prove Corollay.2. O

RemarkD.7 (Generalized Linear Kernel Casa)e remark that based on LemrDeb, our conclusion can also be extended
to the setting when utility functions are generalized lin€2uq et al, 2027).

RemarkD.8 (Tabular Case)Let feature maps being the canonical basis on the factorized space, thét®is; b) =
gsosb)s 1(S;X1)) = gy, andd = max fjSj ?jBj; max; jSjjX (jg, then AssumptiorD.1 s satis ed.
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D.2. Reproducing Kernel Hilbert Space

We consider the case when utility functicm]%) and transition kernd?,, are parameterized by a subset of a reproducing
kernel Hilbert space (RKHS). Speci cally, we consider two RKHE'8 andHP associated with two positive de nite
kernelskU : (S X ) (s X )71 R, andK? : (S B S ) (S B S )7!R, respectively. We denote the
corresponding feature mappingsby:S A @ 71HYand P :S B S 7!'H . We assume that

U= hY(;)fige :f 2HY;kfkqye RY = hY(;);fige :f 2HZ. ;

P= hP(;;)fige :f 2HP ;kfikye RP = NP(;;)ifige :f 2HE,
By Mercer's theorem$teinwart & Christmany2008, we denote the decompositioniéf andK” as

X1 X1

K(xy) = L) ) K(xy) = Fre o
j=1 j=1

wherex;y 2Y withY =S X ) forUandY =S B S for P. Following Cai et al.(20201, we assume that both
HY andHP satisfy the following regularity conditions. For simplicity, we omit the superscript P .

Assumption D.9(Regularity of RKHS) We assum& satis es the following two regularity conditions.
(1) Itholds thaiK (x;y)j L;j j(x)j 1,and ; 1foranyx;y 2Y andj 2 N.
(2) There exist a threshold2 (0; 1=2) and constan€;;C, > Osuchthat; C; exp( Cpj ) foranyj 2 N.

Corollary D.10 (Theoretical Analysis of Algorithnl and Algorithm2 with Kernel Function Approximations)Under the
same conditions as in Theore3n, it holds with probability at least that the regret for joint optimality and for fair
division property of Algorithni satisfy

Regretee.swm (K) . O H2NK *2log?(1= )= log™™*~ (2jSjRHNK= ) ;

Regretp (K) . O HNK ¥2log?(1= )= log***= (RHNK= ) :
Besides, under the same conditions as in Theakelrit holds with probability at least that the suboptimality and
of ine FD loss of Algorithm2 satisfy
SubOpt(h hsi). O (CH)¥?H2N K log(l= )= log'™?*"=? (2jSjRHNK 2=) ;
Lep(b) . O HN K log(1= )= log*™?"*=2 (RHNK 2=) :

Proof of CorollaryD.10. WhenU andP are both parameterized by RKHS, the covering numbers and bracketing numbers
of U andP, together with the eluder dimensidncan be upper bounded explicitly, which are concluded in the following
two lemmas.

Lemma D.11(Covering Number and Bracketing Number with RKH&)nder Assumptiol.9, it holds for all 2 (0;1)
that
logN (; Uik ki) Cs log?(1= )= log"™~ (R=);

logN (; P;k k1) logNp(2; P;k ki)  Ca log?(1= )= log"™ = (2jSjR=):

whereCs; C4 > 0 are absolute constants.

Proof of Lemmad.11 For notational simplicity, we omit all the superscripter P without making confusion. For function
classU, we invoke Lemma.1 (Cai et al, 20208 which shows that

logN (; U;k ki) Csz log’(1=)= log'"™'= (R=);

for some absolute consta@g > 0. In the sequel, we deal with function claBsand we start from bounding the
bracketing numbeN (2 ; P;k ki;1 ) since it upper bounds the covering numbkf; P;k ki1 ). We rst note that
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Np(2; P;k ki;n ) N p(2=Sj;P;k ki ). Now we apply a truncation argument. Lagtbe an integer which will be
speci ed later. Denoté as

Xo p —
= P= vy j:kvkx R P;

which is in fact a linear function class ovér= S B S with nite dimensiondy < 1 . Also, for anyP 2 P, we de ne
the truncation oP to nite dimensional spac® as

o _ _
B = H:’;p jjin 2@
j=1
The difference betwee® and® under thék k; -norm can be bounded as

x1

p—  pP—
kP Bk, =sup P, i )
Y2 j=do+1
XU p__ p__ _ _ Xt p__
jkPkpk' j jkasupj j(y)i R i
j=do+l y2y j=do+1
i _ P +1 p — . . — L.gU
from which we denotéq, = R~ [Zy,; j whichis bounded later. Now I8, = g ;8”19 »n, (=isj ek, y P8

a smallest=jSj-bracket cover o underk k; norm. By the de nition of bracketing in Sectiof, for anyP 2 P, there
exists a brackefg| ; g1 2 Sq, suchthafly) B(y) e(y)foranyy 2 Y. Asaresult,

g8 "o Py § +"aw 8y2Y:

De ne functionsg" = g- "4, andg’ = g° + "4, respectively, and le% be the collect of the brackefg- ; g”]. Then the
setS is an( =jSj + 2", )-bracket cover oP with jSj = jSq,j = N( =jSj; B;k ki ). Thus we have that

Np(=iSj+2"q.:Pik ki1 ) iSi = Ng(=iSj;B;k ky ):

By LemmabD.3, we know thalogN( =jSj;®;k ki ) dolog(4dojSj=). Consequently, it then suf ces to chooce a
proper integad, such tha'y,  =jSj. According to Lemma.3 (Cai et al, 20208, by choosing

do= € log(1= )= log" (2jSR=) ;
where is speci ed in AssumptiorD.9, it holds that'y,  =2jSj. Therefore, we conclude that

Np(2=jSj;P;k ki1 ) dolog(4dojSj=)
Cs log?(1= )= log**~ (2jSjR=):

Finally, due to the fact thatl (; P;k ki1 ) N (2; P;k kg1 ), we can nish the proof of Lemm®.11 O
Lemma D.12(Eluder Dimemsion with RKHS) Under Assumptiol.9, there exists an absolute consta&y > 0 such that

d = maxfdimg(U; 1=K); dimg(Zp ;1=K)g Cs log?(1= )= log'"™*~ (RHNK ):
Proof of Lemmd.12 See Lemma C.1 iai et al.(20208 for a detailed proof. O

Combining Lemma.11, D.12with Theorem3.4and4.4 nishes the proof of CorollanD.10. O
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E. Proofs for Competitive Equilibrium and Social Welfare Maximization
E.1. Proof for Theorem2.4
Proof of Theoren2.4. We rst show the inequality by induction. Fdr= H, it holds that for anyy 2 S,

VO 0y = QO (s T )(s); m(sm))

() (g, - x ()
- ) max u (SH1X )
KX O G (s> G (B en " (49)

Uy (sws ()= V' O (sn):

This shows stepl . Suppose that the inequality holds for step 1, i.e.,Vh(j1 ( ));(i)(5h+1) Vh(+;l );(i)(Sh+1 ) for any

Sh+1 2 S. Then for stefh, we rst have that for an;(sh;xff);bn) 2s x () B,

Z
Qh e = ulsnixg)+ Vi ()P (dsTsni )
Z
ULI)(Sh;XLI))"' Vh(+;1 );(I)(SO)Ph(dScﬁSh;bn) (46)
S

= QU I (snix{ i n):;
where the inequality follows by induction. Then we have that forgng S,

Vh(: ?( ));(i)(sh): Qﬁ 2( ))i(i)(sh; ;;(i)( )(Sh); h(sh))
QU il(sy; ;;(i)( )(Shz); h(Sh))

up (Gns n PN+ W ()P (sTsn; n(sn))
= max u(snixy+ v PO ()P (dsYsn; n(sn))
K2 O R xR e s

U CHCY R PR CLACE SHIICY)

vl (g):

(47)

where the rst inequality follows from46) and the second inequality follows from the de nition qff(')( ) and the fact

that both and ?( ) satisfy the resource constraints. This proves the rst conclusion of Thererilvhen the inequality

holds forh = 1, from the previous proofs we know that all the inequalities become equalities, which further implies that
h(sn) is a competitive equilibrium with respect tcmﬁ') (sh; )Gi2(Ng- O

E.2. Proof for Theorem 2.6
Proof of Theoren2.6. We show the inequality by induction. Fbr= H, it holds that for anys;, 2 S,

VE O s = s W)= v Vs (48)
i=1 i=1 i=1
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- : PN 7O Pnoy 6o
Now we suppose that the inequality holds for step1,i.e., ., V, (sh+1) iz1 Vi (sh+1) for any
Sh+1 2 S. Then for stegh we have that for ang;, 2 S,

N XN | .
AR Ch e SR T CH @ CY)
i=1 i=1
| I _ _ Z W , _
= ul(sn; s+ . Vi, Q0 (9P dsYsn; 2( )(sh))
i=1 i=1
up (sn: ) (sn)) + Vit 0 (9P, (dsYsn; n(sn) (49)
i=1 Si=1
u(sn; (sn)) + Vi, PO (9P (dsYsn: n(sn))
i=1 S =1

= vU (s
i=1
where the rst inequality follows from the choice of in (7) and the second inequality follows from induction, proving the
rst part of Theorem?2.6. ngen the inequality holds fdr = 1, all the inequalities become equalities, which further implies

that n(sh) 2 argmay, »g N Vh(+1?( )i i) (O Py (dsYsn; by), nishing the proof. O
F. Proofs for Online Learning Algorithm: Section 3

F.1. Proof for LemmaC.1
Proof of LemmaC.1 See Lemma 4.9 i€ai et al.(20200 for a detailed proof. O

F.2. Proof for LemmaC.2
Proof of LemmaC.2 We decompose the left-hand side 88) into to two terms
o € HE (QIC) B AR CHNCH N CY)
i=1
X ki) pak. %) kyraky. Y kyrek Ki() k. Ki(i)roky. Yo kyrok
= Q7 (sh; ( )(sn)i A€ O)(sh))  Qpi(shi 1 "(sn); n( )(sh))

= {z } (50)
0}

S A R C S I (€ I CHIN CORNCY E

|2 {z }
(ii)

For term (i), consider that for any agen2 [N ], it holds that

M= Q" (sni n PCN) 2N QY sns P isn)i 7))
br]:(i)(sh; ?;(i)( k)(Sh)) bE:(i)(Sh; rl:;(i)( k)(Sh)) o:
where the inequality holds due to the fact thﬁtis a competitive equilibrium policy againSbE;(i)giz vy and the de nition
of the best responce policy ( ¥) for the agent k. For term (ii), consider we have that

(51)

@)= Q¥Osk: W) KOs RSt fU(sk): k(s
i=1
z Z (52)

= S\dﬁ?%s%ﬁw(dsﬁsm Y( %) (sn)) S\dﬂ?ks%¢%(dsﬁsm K(sh)  O;

i=1 i=1
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where the inequality holds due to the greedy choicefoin Line 4 of Algorithm 1. This nished the proof. O

F.3. Proof for Lemma C.3

Proof of LemmaC.3. First we introduce the following de nition of Itration for the later analysis.

De nition F.1 (Filtration: Online Learning) We de ne the time index map( ; ) byt(k;h)= H (j 1)+ hforany
(k;h) 2 [K] [H], whichis a bijection fronjfK ] [H]to[KH ]. Then, for anyk;h) 2 [K] [H], we de neF(.n) as
the -algebra generated by

shabbhifuy@gowy sshrabbhfuiVgonystadi B fui Ogong: sskal b fud Qg

which are the utility samples and state-action pairs determined bafore The sequencl 1g; 1 is a lItration.

Also, we de neE as the event when the true model is contained in the con dence set of Algatithm
E:= P,2Pful? 200 forall(k;h;i) 2 [K] [H] [N] : (53)

Then we introduce the following lemma to show that evérttappens with at leadt p probability.
Lemma F.2. Forany 2 [0;1], if we set

@ =2Jog(N (1=K; U;k ki) 4HN= )+4(1+ P log(16K 2HN= ));

@ =2H2N?log(N (1=(KHN );P;k ki ) 4H=)+4HN (1+ P log(16K 2H= )=2))
in Algorithm1, then with probability at least =2, eventE happens.
Proof of Lemmér.2. Letf(X ;Y )g , be a sequence of random elementXin R for some measurable s¥t Let
Z be a set of0; C]-valued measurable functions with domaénfor some constant > 0: LetF = fF g , bea

Itration such that for all 1;(X1;Ys; ;X 13 1;X )isF i-measurable and there exigts2 Z such that
E[Y jF 1]= z (X ) holds. The least-squares predictor gif¢X ;Y )d' -, isdenedas

X
b = argmin (z(X) Y )2:
z2Z 1

We say that is conditionally -sub-Gaussian giveR 2 F for any lifforall 2 R,
logE[exp( )jF ] 2 2=2

For any" > 0, we denote bW ("; Z;k k; ) the"-covering number of with respect to the supremum norm distance
kzy 7ok, =sup,,gjza(x) 2z2(x)j:Forany > 0O, wedene

n Xt 0]
Z( )= z2Z: (z(X) BX)?
=1

To utilize the concept of Eluder dimension, we introduce the following lemma.

Lemma F.3. Assume thatforany 1;Y z (X ) is conditionally -sub-Gaussian giveR 1: Then, forany > 0
and 2 [0; 1], with probability atleastt  ,forallt 1,z 2Z( ¢(;")), where

(;")=8 2log(N (S Z:k ki )=)+4t" C+  Ziog@+1)=)

Proof of Lemmd-3. See Proposition 6 dRusso & Van Roy2013 for a detailed proof. O
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Then we are ready to prove LemrR&. It suf ces to shovvuf]i) 2 U,lf(i) andPy, 2 Pﬂf respectively.

Utility Function Estimation. We denote byJ as the set of all the functions: S X () 7! [0; 1] (note thatX () = [0; 1]™).
Forany(k;h;i) 2 [K] [H] [N], wesety,) = uf® x® = (s;xD) andu (;) = ul’(;). We have that
Y@ u (x My is conditionallyl=2-sub-Gaussian giveR ) de ned in De nition F.1 By setting

@ =2Jog(N (1=K; U;k k; ) 4HN= )+4 1+ P log(16K 2HN= ) ;

in Algorithm 1, we can easily check that, using the notion in LenfaBwe have that

@ 2log(N (1=K; U;k k; ) 4HN= )+4(k 1)=K 1+ID log(16k(k 1)HN=
= «k 1(=(4HN); 1=K);

forall k 2 [K]. Thus by Lemma-.3, with probability atleasi. ~ =(4HN ), for anyk 2 [K ] we have that
( , )
uW=u?2 u2u: u O snix ) ugshix: ) k1 UlO;
=1
which givesuﬂ) 2 Ur‘f;(i) forall k 2 [K]. Now using a union bound argument ove? [H] andi 2 [N] we conclude that
with probability at least. =4, forall[K] [H] [N], we haveu(’ 2 u/S®.

Transition Kernel Estimation. Following Cai et al.(20200), foranyP 2 P ,wedenezs :S B [O;HN]S! [0;HN]
by Z
zp(s;bif() = f(sHP(sYs;b); 8(s;bif())2S B [O;HNT;
S

- : . _ PN Uk ik yoxo ek PN k(D)
andZ = fzp : P 2Pg. Forany(k;h) 2 [K] [H], wesetYx = 1, Vi1 (ke )i Xk = (S0 i) Viar (),
andz = zp,. We havetha¥ z (X ) is conditionallyH N=2-sub-Gaussian giveR ) de ned in De nition F.1
Also, by the de nition of P, we have thaZx( )= zp : P 2P . By setting

P
@ =2H2NZlog(N (1=(KHN );P;k ki ) 4H= )+4HN 1+ log(16K2H= )=2) ;

in Algorithm 1, we can check that, using the notion in Lemmm3 we can show that

@ 2H2NZlog(N (1=K; Z;k k; ) 4H=)+4(k 1)=K HN + P H2N2=4 log(16k(k 1)H=)
= k 1(=4H; 1=K)

forallk 2 [K ], where we leave the proof &f ("; Z;k ki) N ("=HN; P;k kj .1) inthe end. Applying Lemm&.3,
with probability at leasi ~ =4H, for allk 2 [K ], we have that

4 sz( Kk 1(:4H;1:K)) Z k( );

which implies that?,, 2 Pr'f. Now applying a union bound over dil 2 [H], with probability at leas. =~ =4, for all
(k;H) 2 [K] [H], we have thaPy, 2 P . In the sequel, we show tht ("; Z;k ki ) N ("=HN; P;k ki .1) for
any" > 0. Indeed, this is proved by using the fact that for @pyzpo 2 Z with P; P°2 P, we have that

Z Z
kzp  zpok, = sup f (%P (dsYs; bds® V ()P YsYs; bds°
(sbf ()25B  OHNF s s
sup HN jP@s%s;p  PYdsYs;bhj= HN kP P%, ,:
(s;bif ()2SB  [0O;HN 18 S '

Thus we have proved the results for both utility function and transition kernel. Now applying a union bound we can conclude
that with the choice of @, @ in LemmaF.2, with probability at leasl =2, eventE holds. O
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Now based on evertt, we present the proof of the two conclusions in Lentnarespectively.

Conclusion 1: Optimism The optimism result directly holds under evé&ntIn fact, for any(k;h) 2 [K] [H], when
Pn 2 P andul’ 2 UM by the de nition of Q" it holds that

Iﬁ(Sh;c'zlh;bq)‘ max U(Sh XY un(snix™)
=1 u2U

oo . Za »
Qi) B (Gixg))  PadsTsni bV (89
i=1 S
oo . . L
Qv (snixi) B (enixi)  Pa(dsTon: BV (s
Z Z

= Clp o om B (dsYsn; )V (9 P (dsYsn; )V { (s9);
i=1

(54)

where the inequality follows from eveht and the optimistic choice dfﬁ () Also, forh = H, the right-hand side db4)
is zero since//“$) () = 0. Forh < H , by the construction o®f"}’ and the fact thab"$}’ ( ; ) 2 [0; 1],
VA

QW (sher i x{) k) 2 O H ] VS (shig) 2 [OH  h; vh+§'>(s°>Ph(ds‘ish b) 2 [O;H  h]:

For anysh;sh+1 2S,an+1 2 A, andhb,; b+ 2 B. Thus, it yields from %4) that
Z Z

k X k k; (i) (i)
K(shian;bn) = Sﬂﬁh (ds%sn; bn) Vi (s9) P (dsYsn; n) Vit (s9)
i=1 . . (55)
X\I k; (i X\I k; (i
= max Vi ()P (dsYsh; br) VD (9P, (dsYsn; bn)  O;
PP sy Si=1

where the last step follows from the de nition of evefitand the optimistic choice d®. Therefore,

X z |
Rnianin) = WO+ Prdstsn bV () Q(snixsb) 0

i=1
for all (sn;x\’;n) 2S X () B . This proves the rst conclusion of Lemn@.3.
Conclusion 2: Accuracy.First we introduce the following lemma to decompose the martingale.

Lemma F.4 (Martingale Decomposition)For anyk 2 [K ], we have the following decomposition,

X . Ky X X
K; ) — .ok .
VEO s w0 g =T ok st
i=1 h=1 h=1
where K is de ned in(38) and the ternDf takes the form
ZA X
(i k. Ky.(;
DF= V() Vi 06 Pr@stsiial) T vk Vil s
i=1 i=1
Moreover, we hav®¥ =0 forallk 2 [K],andD};D3;D3; ;DY ,;D%;D3%; ;isamartingale difference sequence

with respect to the lItratiorfF (g; ; de ned in De nition F.1, where each term is bounded BN .
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Proof of Lemmd&-.4. See Lemma F.1 dEai et al.(2020h for a detailed proof. O

Upon applying Lemmd.4, we have the following decomposition:
x X XX XX X

ARICHRRRREICE Dk + uf (s )+ 0 O sy )
k=1 i=1 (Lt 3 felhetis i )
(0] (i)
X W ZA (56)
+ Ko (1) f ok - k;(i)'tﬁ bk;(i) k. ki (i) P (d (i k.Hé Vk;(i) 0)
Qn (shiXp i) by (s Xy ) h(dsgsp; Bh)Vyar ' (s
k=L h=1 i=1 {z S }

(iii)
For term (i) in 66), note thafDfj 2NH;D K =0 forall (k;h) 2 [K] [H],and
Di;D3;D3;  ;D§ ;D% D%
is a martingale difference sequence. Using the Azuma-Hoeffding inequality, we obtain that, with probabilityat leagf
it holds that

. P
0] 8KH 3N 2log(2=): (57)
To deal with the remaining two terms, we introduce the following lemma.
Lemma F.5(Telescoping Sum)For any > 0,and > 0, we have
X P
sup  jz(xk) z°(xk)j 1+C d+4 = dK:
k=1 2;292Z ()

whered = dim g(Z ; 1=K).
Proof of Lemmd&.5. See Lemma 5 oRusso & Van Roy(2013 for a detailed proof. O

For term (ii) in 66), under evenE and applying Lemm&.5, it holds that, withd; := dimg(U; 1=K),

. X k: (i) . k; (i) P oK
(i) HN max u(sk;x ) min u(skixp ) HN QL+ di+4 dp OK); (58)
k=g u2up uzu
For term (iii) in (56), under evenE and applying Lemm&.5, it holds that, withd, := dimg(Zp ; 1=K),
X EX o K SR k
(i) H  max Vi (S)P (dsTsts; b) Vil (S9)Ph (dsTsk; )
k=1 P?Pn Sz Si=1
X Zw Zow 59
H max ViSO ($YP (dsYsk; B) min VSO (sYP (dsYsk; ) (>9)
k=1 P2pP ¢ S -1 P2pP ¢ S -1
p
H(l+ d;HN +4 d, (Z)K);
Finally, combining bounds(), (58), and £9), we conclude that with probability at leakt
XN i K. Kye(i
Vi) v s
k=1 i=1
pP— P—
8KH 3NZ2Jog(2=)+ HN(1+ d;+4 d; WK)+ H@+ d;HN +4 d, @K) (60)

p p
P aKH 3NZlog(2= )+ (1+ dH(H + N)+4HN d WK +4 d @K
q

P
8KH 3NZlog(2= ) +(1+ d)H(H + N)+4H 2d(N2 © + @)K;

whered = maxfd;; d>g and the last inequality follows from the fact that the inequaqib?+ py P 2(x + y). This
proves the second conclusion in Lem@a&and nishes the proof of Lemm@&.3, O
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F.4. Proof for Theorem 3.4: Regret for Fair Division Property

Proof. Recalling the de nition of FD loss in14), note that

“PE/ k - O (i) (i) ki (i)
h 'Sh) = lesp(fsh_h) (U (sn;x™)  up“(sn; 1 " (sn))
=1
X %) k (i) ki (i)
(Up(sny 70 )(sh)) U (sn; 7 (sn)):
1

Also, observe that
SCks) = W (shie) ul(shr O (sn))
=1

O R G OB T CR R CH) §
i=1
where the inequality originates from the de nition of in De nition 2.2 Under the evenE de ned in (53), following the
same procedure as in dealing with term (ii) &), it holds for allh 2 [H] that,
E R (Xisn) E v e uy’(sni ) by (sns o ) (sn)
k=1 i=1 k=1

+ 00 7O ) b (sns ()
+ bs)(sh; rl:;(i)(sh)) Uﬁi)(sh; rl:;(i)(sh))

XX 0 _ 0
E « max u(sn;x,’) min_u(Snh;X;")
(i) uzutl::(i)

#

i=1 k=1 UZUL"p
N(@+ d)N+N d OK);

where we remark that the rst two terms in the rst line are non-positive because of the de nition of Evant .
Applying the de nition of regret for fair division propertRegret-p (K ), we have that

XX p p
Regretp (K) EFP(%sk) H@@+d)N+N d ®K) O ( dH2N2 OK):
h=1 k=1
This nishes the proof of Theorer®.4 on the regret for fair division. O

G. Proofs of Of ine Learning Algorithm: Section 4
G.1. Proof of LemmacC.4
Proof of LemmaC.4. By the de nition of suboptimality in {1) and LemmaC.2, it holds that

)(\I y . ? (i y . ? (i y . ? (i (i
SubOpflh b) =~ v TEN0 Rl YO TN Gl YO Oy 000 (g
i=1

(61)
VT TEN0 O IO o DNy 600 ().

1;(‘);!b
i=1

P .2 o .2 . .2
For notational simplicity, we de ne (s) := iN:l Vl( Y(0); (B3 ‘Vl(_b_yg’)’ (k)3 (s) and abbreviatelﬁl 7(0); (b))

asdy, (Recall the de nition ofdf1 1) 70 (28)). To proceed further, we de ne that

oo | .
0=y 00 (s;xV)  up(s;xMjand f = Eg kBh(jsiD)  Pn(jsibka (62)
i=1
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By the de nition of @ ), band P, ityields that

)(\I y ? ? ? ?
b); “(b Y(b); *(b Y(b); (b Y(b); “(b .
Eq, h(sh) = Eq, (thh(+1( ) (b)) thh(+]_( )i (b)) 4 Ph\ph(ﬂ( ); (b)) |bhp( (b); “( )))(Sh,bn)

h+1;(b; )
i=1
+(uy) B))(snixi))
W Z (63)
y . ? y .2 .
Ea (a0 e s fsnitn) + HN F e
i=1

= Egp,, he1(Smer)+ HN B+ 0

where the inequality is based on the fact that both the true and estimated value functions are bol@idégl bience, by
telescoping indek over[H], it holds that

s
Xt X 2 qg— q_
(s)= HN P B e, AN Pl
h=1 h=1 h
qg_— X a— q—
C? HN P+ D
h=1

where the rstinequality relies on Cauchy-Schwarz inequality and the de nitiorﬁ’o&ind £ in LemmacC.4, and the second
inequality relies on the de nition o€? in (30). Plugging 1(s;) into (61), we conclude the proof of Lemn@.4. O

G.2. Proof of LemmacC.5
Proof of LemmaC.5. According to the choice dP in Algorithm 1, we rst have that
(b b); (i) (b b); (i) X (b b):(i) X (b b);(i)
Ve (s1) V7 P (sy) Vit (s1) Vo (s, (64)

1;(P;b) 1;(P;b)
i=1 i=1 i=1

since® = flbhghz[H] is the global pessimistic estimatorfy,. , andP, 2 Py, ,. Next, we show by induction that the
right-hand side of§4) is non-positive. For step = H, we have that

A T BV R O R ST I CW) u (su:b{’(su)) 0, 8sy 2S;
i=1 i=1 i=1 =1
sinceuﬂ) 2 U,(j;) ) andbﬂ) is pessimistic estimator for eact2 [N]. Now suppose that inequality
(b b);(i) X (b b);(i)
vh+1 (P;b) (Sh+1 ) Vh+1 (Sh+l ) 0, 8Sh+1 2 S!
i=1 i=1

holds for stegh + 1. Then for stegh, we have that

Uilony (sn) Vit P Osn)= b (sniby (sn))  u (snibi (sn)

i=1 i=1 ':l {7 i=1 }
0] |
Z !
h+1 1(P:b) (S her - (S)  Pn(dsisn;bn(sh)); 8sh2S;

(i)

where(i)  Orelies on the fact thalf:) 2 u,ﬁ?l andbﬂ) is pessimistic estimator for eact2 [N ]. By induction, we prove
that(ii) 0. Thus we conclude that the right-hand side@)(is non-positive. O
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G.3. Missing Proofs of TheoremC.6

Before we start the proof of Theore@6, we introduce the following lemma, which plays the key role in sharpening the
convergence rate in the analysis for both estimated kernels and utility functions.

Lemma G.1(Uniform Bernstein Inequality with Covering Numbeifyor any given functional class f f : X 7! Rg,

whereX is a probability space. If we assume that theovering number oF under in nity-norm is nite, that is,
M = N(;F;k k)< 1 andwe also assume that there exists an absolute constant su¢h{Xdj R a.s., then the
following inequality holds for alf 2 F with probability at leastl

r 2V[f (X)]log(M=) +4r R log(M=) N 2R log(M= )

X
) EFX] 2+ . 2 =,

i=1

whereX; X 1;:::; Xy, are all i.i.d. samples on the probability spake

Proof of Lemma5.1 To obtain this lemma, we adapted Bernstein inequality with the technique dealing with covering
number. See AppendiA.1 for detailed proof. O

Proof of TheorenC.6. We prove the theorem by the foIIowirr_l,g lemmas, which are adapted Xieret al.(2021) are based
on LemmaG.1 For notational simplicity, we de n&f k,. as  E [jf j2].

Lemma G.2. Forany(i;h) 2 [N] [H], it holds with probability atleast =NH that anyb 2 Uéz)l satis es

r

82log(N (1=K; U;k ki )NH= )
D K '

u(s;x®)  ul(s;x) , u(s;x®y  ul(s;x) ,

h

Proof of LemmaG.2. See Appendidt.2 for a detailed proof. O

Lemma G.3. Forany(i;h) 2 [N] [H], it holds with probability atleast ~ =NH thatanyb;e 2 U\’ satisfy

. . . 2 . . . 2
b(s;x)  ul(s;x() , a(s;x)  ul’(s;x() ,

h h

. . . 2
b(s;x)  ul(s;x()
2;D

. : o2
+ a(s;xM)  ul(s;xM)
iDh 2
r

;Dh

64 log(N (1=K; U;k ki )NH=) N 262logN (1=K; U;k ki )NH=)_
h K 3K '

b(s;xM) a(s;x1) ,
Proof of Lemma5.3. See Appendixd.3 for a detailed proof. O
Lemma G.4 (Concentration) By setting

_ log(N (1=K; U;k ki ) NH= )
1- K ’

it holds with probability at least =4 that for any(i;h) 2 [N] [H],u’ 2 U .

Proof of LemmaG.4. This is a trivial conclusion since we note théi)(sh P Xyl My = uy o, O

Lemma G.5(Accuracy) It holds with probability atleast =4 that, forany(i;h) 2 [N] [H]andu 2 Ur(]j)l,

225log(N (1=K; U;k ki ) NH=)
K :
h

. . X 2
u(s;x®y  ul(s;xM) ,
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Proof of Lemma5.5. By LemmaG.3with b = u ande = uﬂ), it holds that with probability at leadt =4NH , for any
u2U,

. . . 2
u(six®y  ul (s;xM)
2, n

)(( L . L 2 =K: . =
i U(Sh;Xh'(l)) UEII)(Sh;Xh' (|)) + 262|Og(N (1 K,3L|i,k kl )4NH )
=1

r
64log(N (1=K; U;k k; )4NH= )
K :
h

Now for any(i;h) 2 [N] [H], we restrictu 2 U,ﬁj)l to obtain that

+ b(s;xV)  ul(s;xM) ,

. . . 2
u(s;xM)  ul) (s;x) ,
v h

r
64log(N (1=K; U;k ki )ANH=)

1+ b(s;x®)  ul(s;x™) ,

K
h
. 262logN (1=K; U;k ki )Y4ANH=) (65)
3K r
b(s;x)  ul(s;xM) , 64logN (1=K; lPJ(;k ki JANF= )
v h
. 90log(N (1=K; U;k ki )4ANH= )
K :
Solving the quadratic inequality i6%), we have that
r
2, n K
Finally, applying a union bound argument oget) 2 [N] [H], we nish the proof of LemmaG.5. O

This proves that with probability at least =4, we have ! 225log(N (1=K; U;k k; ) 4NH= )=K. Combining this
result with LemmaG.4, we nishes the proof of Theorel@.6. O
G.4. Missing Proofs of TheoremC.7

Proof of Theorent.7. As the rst part of TheorenC.7, we introduce the the following key lemma to show that the event
n 0
Ei:= Ep, kBYE(js;b Pn(js;bk? Clog(Ng(1=K; P;k ki1 )H=)=K; forallh 2 [H]
happens with probability at least =4, whereCCis an absolute constant.
Lemma G.6. According to Algorithn® , then evenE; happens with probability at leadt =4.
Proof of LemmaG5.6. For the simiplicity of notation, we denote kg,a(lb)(s; b = klb( is;b  Pn(js;bki. By the
following lemma, we show that MLE estimation in Algorith&) can converge at a negative square root rate.
Lemma G.7 (MLE Estimation Guarantee)According to Algorithn® , then event
n o}
Ex:= E, (M)  Aog(Ng(1=K; P;k ki1 )H= )=K; forall h 2 [H]
happens with probability at leagt =8, wherec®is an absolute constant.

Proof of Lemmad5.7. See Appendit.3 for detailed proof. O

Notice that the gap between Lemr@a6 and LemmaG.7 can be bridged by concentration analysis which relies on the
adapted Bernstein inequality in Lemr@al We introduce the following lemma.
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Lemma G.8 (Bernstein Inequality with Union Bound.l)According to Algorithn®, if we de ne the event
n 0
Es:= [Ep, E,lon(®ME) c™Mog(Nj(1=K;P;k ki1 )H= )=K; forallh2 [H] ;

thenE, \ E3 happens with probability at leagt =8, wherec®’is an absolute constant.
Proof of Lemma5.8. See Appendit.3 for detailed proof. O
Since it holds that

E . on(®"F) Ep,o(®YF)+[Ep, E lon(B"F);
LemmaG.6is the direct consequence of LemiBa7 and LemmaG.8. O

With LemmagG.6, the last part of the proof of Theore@17 is to upper boundup, f Recall that we denote by
gh(lb)(s; b := klb( js;b  Ph( js;bks. On the evenEy, we decomposé: as follows.

P = Ep,0n(BM"E)+[E,  Ep,lon(B)+ Ep, (G(B)  gn(BME))
2Ep, oh(BYE) +[E ,  Ep,Jon(Bh) +2Ep, kB (js;)  BYE( ;s bk
2Ep, gn(BYF)+[E,  Ep,lon(B)+2
4,+[E, Ep,lon(Bh);

where the rst inequality relies on the fact th@+ b)? 2(a? + ?) and the last inequality relies on the de nition Bf.
Hence it suf ces to upper bound the second tern(G6é). Motivated byUehara & Sur(2021) and the proof of Lemm&.2,
we prove the following lemma based on the adapted Bernstein inequality in L&rina

(66)

Lemma G.9(Bernstein Inequality with Union Bound ll)According to Algorithn® and selecting
2= Clg(Np(1=K; P;k ki1 )= )=K, if we de ne the event

Ea:= [Eo, E,lon(P) C™Mog(Np(1=K;Pik ku1)H=)=K; forallh 2 [H] ;

thenE; \ E,4 happens with probability at leagt =8, whereC%is an absolute constant.
Proof. See AppendipH.3 for detailed proof. O

Apply LemmaH.3and LemmaG.6. Based orE; \ E,;\ Ejz and the selection of;, then

sup 1 (c™+ ¢ CMlog(Ng(1=K; Pk kua JH= )=K;
h2[H]

which concludes the proof for Theoretn?. O

G.5. Proof for Theorem4.4: Of ine Fair Division Loss

Proof. Similar to the proof for Theorer8.4, the following two inequalities originate from the de nition of in (4).

X (i) [ (i) (i)
hE(bsn)= _inf U’ (snixM)  up’ (sni by (sn))
><2PE(sh;h)i:l

ut?(sn: O (b)(sn)) U (sni b (sn)
i=1

Also, observe that
Sl X (i) (i) (i) (i)
h(bsh) = up’(sn;€") up’(sn; b, (sn))

uf (sn 7)) U (sni b (sn))
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By the de nition of of ine FD loss de ned in @4), it holds that

XX () 2:(i) () 2:(i)
Lrp E . Up’(sn; n7 ' (D)(sn)) by (sns 7 (b)(sh))
i=1 h=1

+ 0N (sn; PV (b)(sn)) 0% (sh; b7 (sh)
+ 0\ (sn; B (sn)) Uy (sni bl (sn))

By the de nition of b and the evenE de ned in and(C.6) de ned in TheorentC.6, it further holds with at probability at
leastl that

XX (i) (i) (1) i i
Lo E b (sn; b (sh))  ul” (sn; b (sn))j
i=1 h=1

Xy 49— i | i
E, ibh (sni B (sn)) (03 b0 (sn))i

i=1 h=1
O (HN  log(N (1=KZ;U;k ki ) NH= )=K);

where the second inequality relies on the Cauchy-Schwarz inequality and the last inequality originates from Th&orem
Hence we conclude the proof for Theordrd. O

H. Missing Proofs of Auxillary Lemmas
H.1. Proofs for LemmaG.1

Proof of Lemma5.1 Denote one of the-covering ofF asF = ffig,m; F ,whereM = N(;F;k ki ). Then
applying Bernstein inequality with union bound on the it holds with probability at least

.
1% a(Xi) E[g(X)] 2V[g(X)llog(M= ) . 2Rlog(M= )

n._ n 3n ’ ©7)
forallg 2 F . By the de nition of covering number, for arfy 2 F , there existg 2 F such thakf  gk; . Itthen
yields that

1 X 1 X 1 X : :

o P BRI o (F(X) 9(Xi) + - o(Xi)  E[gO)] + JE[9EO)] EIf (X)]]
=1 i::rl" i=1 (68)

5 4 2VIgX)llog(M= ) | 2RIogM= ).
n 3n
Notice that
r r s
2VI[f (X)]log(M= ) 2V[g(X)]log(M=) 2V[f (X)]log(M=)  2V[g(X)]log(M=)
n n n n
r 2log(M= p )
= 20O0) P oor Vel
po. P

where the rst inequality is based on the basic inequaﬁty? Vi jx yj for two absolute variables, y. What
remains is to upper bound the difference of variancé8).(

VIECOT VIgOON = EL(F(X))?1 (EIF (X)D?  EL9(X)?]  (Elg(X)])?
= E (F(X) E[QX)D* (g(X) EIf (X))?
Eff (X)) E[g(X)]  o(X)+ E[f (X)]j jf(X) E[gX)]+ g(X) E[f (X)]i]
2 4R=8R:

(70)
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Plugging 69) and @9) into (68), it holds that for alf 2 F with probability at least

r r
¥y B 2 e AIFOONeaM=) | ZighM=) P 2RiogM= )
" n n 3n

i=1

r 2V[f (X)]log(M=) +4r R log(M=) N 2R log(M=)

=2 + ;
n n 3n

which concludes the proof of Lemn@& 1 O

H.2. Proofs for LemmaG.2

Proof of LemmaG.2 The proof is adapted from Lemma A.3Xie et al.(2021). We rst apply LemmaG.1with =1=K
over function classf” = f(u  u{”)2 : u 2 Ugto obtain that

_ . L2 _ . 2
us;x®)  ul(s;xM) u(s;x)  u(s;x)
2; 2;

h Dn
= E,jusix®) ulsxiF = uisixg ) up (seixg )2
=1

U
fav,  usx0) ul)(sxm) ® Jog(N (1=K: U7k k; )NH= ) (0
n ' h 1> h o , 8log(N (1=K; Ui Kk ki )NH= )
K 3K
, 8log(N (1=K; Uk ky )NH= ), 2
K s K
. - . 16log(N (1=K;  ;k ki )NH=) 38log(N (1=K;  ;k ki )NH=)
(i) (i) - (1)
u(s; x’) ug’(s;xt) " K + WK
(i) (D) e () 32log(N (1=K; ;k ki )NH=) 76log(N (1=K; ;k ki )NH= ).
u(s;xt’) - up(s;xt) - K + 3K ;

(71)
where in the rst and second inequality we use the fact that 1 for all u 2 U and in the last inequality we use the fact that
N (1=K; U,E');k ki) [N(1=K;U;k ki )]%. Herewe mark and in red to highlight their difference. Now on the
one hand, by basic inequaliig bj? j a® b7}, we know from inequality 71) that

u(six®y  ul (s;xM)
,

u(s;xM)  ul) (s;x)
i h 2

;Dh
r

r r
u(ex®) ud(exy 3210g(N (1K; Uik ki )NH= ), 7610g(N (1=K; Uik ki )NH= ).

h K 3K
(72)
On the other hand, by another basic inequality bj j a =4, we know from inequality 71) that
u(s;x)  ul(s;x) u(s;x®)  ul(s;x)
r 2, n 2,Dp
32log(N (1=K; U;k ki )NH=)  76logN (1=K; Usk ki NH= ) . (73)

K 3K u(c;xM) uﬂ)(c;x(‘)) ,

h
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Thus combining 72) and (73) we obtain that

u(six®) - u(sixV)
v h
(r

min u(s;x) uﬂ)(s;x(‘))
2;

Ly (i) (1) fa- (1)
u(s; x uy’(s;x
(sx)u(sx

r r
+ 32log(N (1=K; U;k k; )NH= )+ 76log(N (1=K; U;k ki )NH=)_
h K 3K ’
)
32log(N (1=K; U;k ki )NH=) N 76log(N (1=K; U;k ki )NH=)
K 3K u(s;x(M) uﬁi)(s;x(i)) N

r

| " (74)
Denote = ku(s;xM) ul(s;xM)k,, , and optimize over> 0in (74), we obtain that

u(s; x) uﬂ)(s;x“))
"

Ly (i) (1) - (i)
u(s; x u,’(s;x
. ( ) h ( ) 2:D

h
r

r
p_ 4 32logN (1=K; Uik ki )NH=)  76logN (1=K; Uik ki )NH= ).
K 3K ’
)
32log(N (1=K; U;K ki )NH=) _ 76log(N (1=K; U;k ki )NH= )
K 3K
(

r r
p_ . 32log(N (1=K; U;k ki )NH=) N 76log(N (1=K; U;k ki )NH= )
K 3K '
)
32log(N (1=K; U;k ki )NH=) N 76log(N (1=K; U;k ki )NH=)
K 3K
r
82log(N (1=K; U;k ki )NH= )
K )

where we choose = P log(N (1=K; U;k k; )NH= )=K. Here we mark and in red
to highlight their difference. This nishes the proof of LemrGa2

H.3. Proofs for LemmaG.3

Proof of Lemma5.3. The proof is adapted from Lemma A.4 ¥ie et al.(2021). We rst note that we can rewrite

. . . 2 . . . 2
b(s; xMy  ul(s:x® a(s:xM)  u(s:x®
( ) up’( ) 20, ( ) up’( ) -
1 X () oy (D) oy (i) () () e .y ()
_K b(shrxh ) B(Shaxh ) b(shxxh )+ B(Shrxh ) 2uh (Shrxh )
=1

(75)
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By (75), we apply Lemma3.1with = 1=K and function class}’"’ = f (b e)(b+e 2u)): b;e 2 Ugto obtain that

. . . 2 . . i 2
b(s;xV)  ul(s;x) N a(s;x)  ul(s;x1) ,

h h

_ . 2 _ , 2
b(s;xM)  ul?(s;x0) o+ oe(six) ul? (s;x0) _
2;:Dp 2;:Dp

V 1
u h ) i
Pav bis;x®) e(s;x®)  b(s;x)+ a(s;xM) 2u§1')(s;x(i)) log(N (1=K; 1k ki )NH=)
K

N 161log(N (1=K; 7k kg )NH=") . 16log(N (1=K; 7k kg )NH=") N 2,
v 1 3K K K’
U h ) i
Haev , b(s;x®) a(s;x®)  b(s;xD)+ a(s;x") 2uf]')(s;x(i)) log(N (1=K; ;k ki )NH=)

K
, 64109 (1=K; ;K ki )NH= ) 64log(N (1=K; ;k ki)NH=) 2
3K r K K’
’ ’ 2; h K 3K ’

where in the rst and second inequality we use the fact that 1 for all u 2 U and the fact thaN (1=K; Uﬁ’;(i); k

ki) [N(1=K;U;k ki )]*. Here we mark and in red to highlight their difference. This nishes the proof of
LemmaG.3. O

Proof of LemmaG.7. Before we proceed, we need introduce some concepts to help characterize the convergence rate of
MLE estimator, which follows fronGGeer et al(2000; Uehara & Surn(2021).

We de ne the modi ed function class d?y, :

(S
ﬁh:

)

|b+Ph Ibzp

2

Given a function clask , letN(; F;k kp; ,) be the bracketing number &f w.r.t the normk k»; , given by

z 1=2

kfky , = E (f (%'s; )% ds?

h

Then, the entropy integral & is given by

(z q )
Je (; F;k k2 ,)=max logNp(u;Fik kz; ) du;
2=
We also de ne the localized class Bf, :
. n - h [ 0
Pn()= P2Py:E, h* B(js;hkPn(js;b 2,

whereh Ib( is;bkPn( js;b denotes Hellinger distance de ned by

S

Z q _— p - 2
0:5 B (s%s; b) Pn(s%s;b) ds®

Then we introduce the following lemma (Theorem 4Jahara & Sur(2021)) to characterize the property of MLE estimator.
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Lemma H.1 (MLE guarantee with general function approximatioiye take a functioen( ) : [0; 1] lp ‘Rs.t.Gh()
Js[; Pn();k kz ,]andGy( )= 2 is a non-increasing function w.r.t Then, letting » be a solutionto K 2 coGp( )
W.r.t , wherecy is an absolute constant. With probability at ledst , we have

MLE ( H 2 : pioz
E, BC(is) Pu(ish o n+ log(e=)=K

Proof. Please refer to Theorem 4 ehara & Sur(2021). O

Our next step is to show that selecting= czp logN[(1=K; P;k Ky;1 )=K in LemmaH.1 suf ces to prove Lemmd&s.7.
First we show the following facts to discuss the relationship of bracketing numbers of different function classes.

LemmaH.2. Itholds thatforall ~ O,Nj(;Pn();k kz ,) N (2 2.P;k ki ):

Proof. NoticingNp(; Pn( );k ka; ,) N (;Pnik ko ,);itsufces to prove that

ND(;Eh;k kz; h) N D(Z Z;P;k k]_;l ):

q
Take thed 2-brackets oP asBp = f(P;P)gj2(m ), WhereM = N(4 2P k ky;1 ). Thenforany®, 2 P = PotPn,

— S
there existy 2 [M],s.t.P- Py PUYandkP: PUky1 42 Hence, il +2P“ B, P ;P“. It also holds
that,
S S 22 O0s S 1, 312
P-+P PU+ P P-+P PU+ P
FePo PYEP o gT g PEYP PYtPh, g
2 2 s 2 2
2, n
" #_
E Z PPy BUeR,
s
"o 2 2
r 1
] L .
2 P, P, 11 ’
. . . . P* P P ——0
where the dst mequzallty relies on the basic inequalitya o] ja b.
L u N
Hence, @; Prrhn are also the-brackets ofP,, which concludes the proof of Lemnt&2. O

j2M]

In LemmaH.2, we choosés; (1) = ( 2:2)p logNp( 4=2;P;k ki1 ), which satis es that (because of LemrHe2)

q
Gn() ( 2=2) logNp( 2=2,Pn( );k kz ,)
Je (i Pn( )ik kz ,);

(76)

when we assume thidgNp( 2=2;Pn( );d) 2

Bis easy to nd thatG( )= 2 is non-increasing function. Assuming thét> logNy( ?=16,P;k ki;; ) and solving
K 2 cGn( ), we derive the feasible solution region
( )

Co
2 [0;1]: p— P
(041 "K =2 logNp( *=2P;k ki1 )

Then there exists an absolute cons@nts.t. , = czp logN[(1=K?;P;k ki;1 )=K falls into such a feasible region.
Hence, by Lemmé&l.1, there exists a constact s.t.

2
E, BME(ish Pu(is:b ) log(Ng(1=K?%P;k ki1 )=)=K:
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Taking a union bound fdn 2 [H] and rescaling, we obtain that

2
sup E, B"E(jsi) Pu(jsih  cAog(Np(1=KZPik kyp )H= )=K;
h2[H]

which concludes the proof of Lemnih3. O

Proof of Lemma5.8. Motivated byUehara & Sun(2021), we need to consider the localized class and apply Bernstein
inequality to sharpen the convergence rate. We de ne the estimator localized class as

n 0
PEct:= B2P E gn(P) Aog(Ng(1=K%P;k ki )H= )=K : (77)
Then we de ne the corresponding function class
Fl:=fkBP(js;b) Pn(js;hkd:B2pLocty: (78)

We denote byM1( ) := N(; FLk ki1 ) and notice thaBM-E 2 P ¢l for all h 2 [H] on the evenE, de ned in
LemmaG.7. Applying LemmaG.1o0n the function clask } with the union bound over 2 [H], it holds for allh 2 [H]
and® 2 P Lo¢ L with probability at least. =16 that

S r...
(Eo, E ™) 2+ v h[gh(#f‘)]lﬁg(Ml( H=) g Iog(Mnl( =), 8Iog(l;/lK1( )=)

S r

5 4+ BE [oh (B)]log(M 1 ( )H= ) +g _ogMi()H=) 8logM()H=)
K K 3K (79)
- P 8c%log(Np(1=K; P;k ky;1 )H=) log(M1( )H=)
K
i
+g 109M1(H=) | 8logM1()H= ).
K 3K

where the rstinequality also relies on the fact tisatpy ,, koh (P )k SUPp,p (klbkl;l + kPhky1 )? 4. Toselecta
proper , we de ne a larger function clags? as follows,.

FO:=fkB(js;b) Pn(js;hki: P 2Pg: (80)
By the following lemma, we characterize the relationshifF §fandF }.

Lemma H.3. Itholds forallh 2 [H]thatN (; F%;k ki ) N p(; Pk kg1 ):

Proof. Foranyi® 2 P, there exist® "2 f Py, P, whereM = N (; Pk ki1 ), s.t.kPCOer ik
Notice that h i h i
kPCY P2 kB Pk (s;b) 2 KPS Puky jk B Ppky (s;b)
h i
Cover .
2 kP, Bk, (s;b 61)
2kPCOVeT Py,

2kp.Cover Py, ., 2:
h i
Taking supreme ove8 B , we obtain that kPCo" P.k3 k B P,k ) 2 , which implies that

N(2;Fpik ki) N (;P;k ki)
Notice that covering number can be upper bounded by bracketing number, that is,
N@;F)k ki) N (5P;k ki) N g2 Pk kg );

which concludes the result of Lemrkh3. O
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SinceM1() N (;F%k ki) N n(; P;k Kg;1 ), selecting a proper = 1=K?2, we have with probability at least
1 =16that

sup sup jlEp, E ,lon(®)j ™og(Np(1=K%P;k ki )H= )=K;
h2[H]b2p Loc1

wherec®is an absolute constant. Hence we nish the proof of Len@n@ O

Proof of Lemma5.9. This proof is more complicated than the proof of Lem@&.&. On the evenE; de ned in Lemma
G.6, we de ne the estimator localized class as

PLc2:= fB 2P, i Epgn(B®) g (82)
We also de ne the function class
F2:=tkB(js;b) Pp(js;hkd: B 2Pt forallh2 [H]g: (83)

We denote bM,( ) := N (; FZk ki1 ) and notice tha, 2 P °¢2 on the evenE; de ned in LemmaG.6. Applying

LemmaG.1on F2 with union bound oveh 2 [H], we have for alh 2 [H] and® 2 P L°¢2 with probability at least
1 =16that

S r—
(Eo, E @) 2+ 2 h[gh(rb)]lﬁg(mz( H=) o log(an( =), 8'09(2",5( )=)
S r
o 4+ BELI(PNlogMo()H=) o logM2()H=) , 8logMa()H= )
K K 3K
S (84)
» . 8lEo, E}h(]gh(ﬂ*)j+ 2) |0g(Ma( H= )
+g  109M2()H=) . 8logMz()H= ).
K 3K

By LemmaH.3, it holds thatM,( ) N (;F}k ki) N 1(; P;k ki1 ). Selecting a proper= 1=K?, we solve the
quadratic inequality&4) with respect tq[Ep, E , ]gh(lb)j. We obtain thatJehara & Sun2021; Xie et al, 202])

sup sup j[Ep, E,lon(®)j C%og(Ny(1=K?%P;k ki1 )H=)=K
h2[H]p2p Loc2

with probability at leasi. =16, whereC%is an absolute constant. Hence we conclude the proof of LeGu@ia I

I. Useful Lemmas for Reproducing Kernel Hilbert Space

Lemma .1 (Covering Number of RKHS Ball undde k; -Norm). Under Assumptiol.9, the covering number of RKHS
ballHg = ff 2H :kfky RgwithradiousR underk ki -norm is bounded by

logN (; Hr:k k1) C log?(1= )= log**= (R=):
whereC > 0is an absolute constant.

Proof of Lemmad.1. See Lemma C.2. i€ai et al.(2020H for a detailed proof. O

Lemma .2 (Eluder Dimension: RKHS)Under Assumptiol.9, the eluder dimension of function cla8swith functions
upper bounded b parameterized by RKHS ballg with radiousR can be bounded by

dimeg(F; ) C log?(1= )= log**~ (RM=):

Proof of Lemmad.2. See Lemma C.1. i€ai et al.(2020h for a detailed proof. O
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Lemma 1.3 (RKHS Trancation Error with Assumptidd.9). LetC; andC, be the absolute constants in Assumptn8.
There exists an absolute constéhsuch that for any 2 (0;1=2);t 1,andR 2, if we set

I m
do= € log(1= )= log"¥ (tR) :

thenitholdsthatl, 4(1 )(C») ‘and

X _ _
"o 1= P [ R CI%d} R(C, ! exp( Chdy=2) 1=t:

j>d o

Proof of Lemmad.3. See Lemma F.7. i€ai et al.(20200 for a detailed proof. O



